الجمهورية الجزائرية الديمقراطية الشعبية

République Algérienne Démocratique et Populaire
وزارة التعليم العالي والبحث العلمي

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique
جامعة سعيدة، د. مولاي الطاهر
University of Saida, Dr. MOULAY Tahar
UNIVERSITY

كلية العلوم

Faculty of Sciences
قسم البيولوجيا
Department of Biologie
Thesis for obtaining the degree of Master
In Biological Sciences
Field: Biochemistry
Theme

Molecular Modelling and Prediction of Protein 3D-structure, Principals and Applications

Presented by:

- Miss: Ouafaa BAHLOUL

Submitted on: 02 July 2022
Before the jury composed by:

President
Examiner
Supervisor

Mr. Yahia BELLIL
Mr. Noureddine HALLA
Mr. Abdelkrim RACHEDI

MCA University of Saida
MCA University of Saida
MCA University of Saida

First and foxemost I am extremely grateful to my supervisox ONx. AHbdelkrim ORachedi, fax his inualuable advice, continuous support, and patience duxing doing this wonderful praject on the topic (Moteculax Mbodeling snd ©rediction of BO-structure of proteins, ©Principals and Atpplications), His guidance and advice caxried me through all the stages of writing my project, which also helped me to get acquainted with a new world of bioinformatics science and made me love this field.

I am really thankful to have acquixed them.
My thanks also go to the jury members my respected teachers, OVx. OYahia Bellil and Orx. Moureddine Halla fox their brilliant remarks and ideas.

AIl praises be to Afllah, the Card of the world, who guided me the right way, today. If old the days tiredness between the cover of this
humble work, to my My Chaster and honoured prophet MWhammad-May peace and grace of allah be upon him.

To my great parents, who worked hard and made every effort to continue my education until I reached this precious moment, the spring of endless giving and love my mother Fatema. To who worked hard and made every effort and supported me financially. morally my father Ohaabane.

My y dedication also goes to who helped me a lot in this journey, and gave me the peace of my heart that no one gave me, and who was always my only motivation, Myffancé Fiasse.

To those who have demonstrated to me what is brotherhood and love mean, my brothers and sisters. Afbdellatif. Your ehouda, Hadjer, OHbdelmajed. ©Y oucef, And my dear friend Fladjer.

To every one who helped me from near or fax.

Summary

Abstract
List of Figures
List of Tables
List of Abbreviations
General Introduction 22
Chapter I: Theoretical background 24
I. Wide concept of proteins 25
I.1. Protein structure 25
II. Levels of protein structure 26
II.1. Primary structure 26
II.2. Secondary structure 27
II.2.1. Types of secondary structure 28
II.2.2. Ramachandran Plot 32
II.3. Tertiary structure 33
II.4. Quaternary structure. 34
III. How Do Proteins Arrive at Their Final Shapes? 35
IV. Protein classification. 36
V. Dihydrofolate reductase enzyme (DHFR) 37
V.1. Enzymes 37
V.2. Background of Dihydrofolate Reductase. 37
V.3. Human DHFR 38
VI. Methods for determining protein structures 41
VII. Experimental methods 41
VII.1. X-Ray Crystallography 42
VII.2. Nuclear Magnetic Resonance (NMR) 43
VII.3. Cryo-electron Microscopy 44
VIII. Biological databases, and high-throughput data sources 46
VIII.1. Protein Data Bank (PDB) 46
VIII.1.2. PDB Members 47
VIII.2. What is a FASTA file? 49
VIII.3. BLAST (Basic Local Alignment Search Tool) - NCBI 50
VIII. 4 UniProt 51
VIII.4.1 Uniprot Tools 51

Summary

VIII. 5 3-Dimensional Structural Superposition server (3d-SS) 53
IX. Computational and theoretical methods 55
IX.1. Homology modeling 55
IX.2. Fold recognition or "Threading" 57
IX.3. Ab initio prediction 58
X. Why is it so important to understand a protein's three-dimensional structure? 59
Chapter II: Materials \& Methods 60
Objectives 61
I. Selection of a target protein and amino-acids sequence 61
II. Homology molecular modeling steps 61
II.1. Identification and extraction of target sequence 62
II.2. Sequence alignment 64
II.3. Structure templates identification. 70
II.4. Common Core calculation. 73
II.4.1. Common Core calculation - overall superposition 74
II.4.2. Identification of core regions 78
II.4.3. Region guided superposition and Common Core enhancement 84
II.5. Amino-acids side-chains building 92
II.6. Loop regions building 97
II.7. Final model 98
Chapter III: Results \& discussion 99
I.Presentation of the results 100
I.1. Structure similarity identification 100
I.2. Definition of the types of structures selected from BLAST results 101
I.3. Model template 103
I.4. Final model (predicted model) and completeness 104
II.Modeling quality assessment and validity 105
II.1. RMSD overall superposition 105
II.2. RMSD core based superposition 105
II.3. Common core and secondary structure 106
II.4. Catalytic Residues Preservation 108
III. Choice of model building 109
IV. Bioinformatics tools development 109

Summary

General Conclusion 111
Appendix part I 114
Appendix part II 117
Appendix part III 123
References 207

Chapter I

Table 01: \quad Three types of alpha helix.
Table 02: Examples of protein functions.
Table 03: General information of Dihydrofolate reductase enzyme gene, structure, and active site.

Table 04: DHFR inhibitors that have been approved.

Chapter II

Table 01: \quad Selected nine (9) DHFR sequences from the BLAST sequence alignment shown with their entry codes (first column) representing their access codes in the PDB databank each with the title of the particular study that generated the 3D-structure.

Table 02: \quad Hit sequence with PDB structure id: 3K45
Table 03: Hit sequence with PDB structure id: 1U70
Table 04: \quad Structural Alignment details between 3K45 and 1U70.
Table 05: \quad Structural Alignment details between 3K45 and 1DR1.
Table 06: \quad Structural Alignment details between 3K45 and 4H95.
Table 07: \quad Structural Alignment details between 3K45 and 4GH8.
Table 08: Structural Alignment details between 3K45 and 1ZDR.
Table 09: \quad Structural Alignment details between 3K45 and 3JW3.
Table 10: \quad Structural Alignment details between 3K45 and 2QK8.
Table 11: \quad Structural Alignment details between 3K45 and 2ZZA.
Table 12: The 10 regions/segments common core in each structure with represented by their PDB ids.

Chapter III

Table 01: \quad RMSD values in overall superposition.
Table 02: RMSD directed per region values.

Appendix part II

Table 01: \quad Hit sequence with PDB structure id: 3K45
Table 02: \quad Hit sequence with PDB structure id: 1U70
Table 03: Hit sequence with PDB structure id: 1DR1
Table 04: \quad Hit sequence with PDB structure id: 4H94
Table 05: \quad Hit sequence with PDB structure id: 4GH8
Table 06: Hit sequence with PDB structure id: 1ZDR
Table 07: Hit sequence with PDB structure id: 3JW3
Table 08: \quad Hit sequence with PDB structure id: 2QK8
Table 09: \quad Hit sequence with PDB structure id: 2ZZA

Appendix part III

Table 01: \quad Residues used for overall superposition between 3K45 and 1U70
Table 02: Residues used for overall superposition between 3K45 and 1DR1
Table 03: Residues used for overall superposition between 3K45 and 4H95
Table 04: \quad Residues used for overall superposition between 3K45 and 4GH8
Table 05: \quad Residues used for overall superposition between 3K45 and 1ZDR
Table 06: Residues used for overall superposition between 3K45 and 3JW3
Table 07: \quad Residues used for overall superposition between 3K45 and 2QK8
Table 08: Residues used for overall superposition between 3K45 and 2ZZA.
Table 09: Residues used for core identification superposition between 3K45 and 1 U 70.
Table 10: Residues used for core identification superposition between 3K45 and 1DR1.
Table 11: \quad Residues used for core identification superposition between 3 K 45 and 4 H 95 .
Table 12: \quad Residues used for core identification superposition between 3K45 and 4GH8
Table 13: Residues used for core identification superposition between 3K45 and 1ZDR
Table 14: Residues used for core identification superposition between 3K45 and 3JW3.
Table 15: Residues used for core identification superposition between 3K45 and 2QK8
Table 16: \quad Residues used for core identification superposition between 3 K 45 and 2ZZA
Table 17: Residues used for core extension superposition between 3K45 and 1U70.
Table 18: Residues used for core extension superposition between 3K45 and 1DR1.

Table 19: \quad Residues used for core extension superposition between 3 K 45 and 4H95.
Table 20: \quad Residues used for core extension superposition between 3K45 and 4GH8.
Table 21: Residues used for core extension superposition between 3 K 45 and 1ZDR.
Table 22: Residues used for core extension superposition between 3K45 and 3JW3.
Table 23: Residues used for core extension superposition between 3 K 45 and 2 QK 8 .
Table 24: Residues used for core extension superposition between 3K45 and 2ZZA.

List of Figures

Chapter I

Figure 01: Amino Acid structure.
Figure 02: Peptide bond formation.
Figure 03: The sequence of a polypeptide chain from an antibody, with the N - and the C terminus.

Figure 04: The primary structure of a protein is the sequence of amino acids.
Figure 05: \quad The secondary structure of a protein may be an α-helix or a β-pleated sheet or both.

Figure 06: Alpha- Helix.
Figure 07: Beta-sheet.
Figure 08: Parallel beta-sheet \& Antiparallel beta-sheet.
Figure 09: Beta Barrel (PDB: 1A0S).
Figure 10: Turns and Loops: (PDB- entry 1TPD).
Figure 11: Importance and determinants of Secondary structure (Ramachandran plot)
Figure 12: \quad The tertiary structure (variety of attractive forces).
Figure 13: Quaternary Structure.
Figure 14: Protein structure has four levels of organization.
Figure 15: Bacterial (3DFR) and human (1DLS) dihydrofolate reductase.
Figure 16: The reduction of dihydrofolate to tetrahydrofolate catalyzed by DHFR.
Figure 17: \quad DHFR (Met20 loop) + NADPH + folate.
Figure 18: The main components of a X-Ray powder diffractometer including a goniometer.

Figure 19: Workflow for solving the structure of a molecule by X-ray crystallography.
Figure 20: Components of an NMR equipment.
Figure 21: Machine of the Cryo-EM.
Figure 22: Workflow of cryo-EM structure determination.
Figure 23: A screenshot of PDB - Protein Data Bank home page.
Figure 24: PDB Members.
Figure 25: A screenshot of the FASTA file from the UniProt site.
Figure 26: A screenshot of the FASTA file from NCBI site.
Figure 27: BLAST homepage showing the four options of BLAST.

List of Figures

Figure 28: A screenshot of the UniProt web page.
Figure 29: 3d- SS (3-Dimensional Structural Superposition server) homepage.
Figure 30: 3d- SS options from the web page.
Figure 31: Steps in homology model building process.
Figure 32: The three main steps of threading.
Figure 33: The ROSETTA protocol flowchart Fragments are generated from unrelated protein structures in the PDB before being used to assemble full-length models using simulated annealing simulations guided by a knowledge-based force field.

Figure 34: The three approaches of protein structure prediction.

Chapter II

Figure 01: Screenshot of the process of obtaining the amino acid sequence by entering the string for the DHFR in the Query field UniProtKB.

Figure 02: The Open-format of the selected human DHFR amino-acids sequence.
Figure 03: The amino-acids sequence of the human DHFR in FASTA format downloaded from the UniProt database.

Figure 04: Screenshot image showing the home page of BLAST and the tools it carries.
Figure 05: The steps of The procedure for running BLAST to search the protein sequences database aims at finding similar proteins to the target sequence.

Figure 06: Depiction of top part from BLAST output sequence alignment run involving alignment search for the query sequence against the library of PDB sequences.

Figure 07: Multiple alignments of the selected sequences with the target sequence in top.
Figure 08: The 3D-SS starting page. Usage can click the button Option to proceed.
Figure 09: 3d-SS option list. The second option for sup as highlighted
Figure 10 List of the fixed molecule and the other rotated molecules selected for superposition.

Figure 11: \quad Superimposition of all selected structures.
Figure 12: The molsoft graphics panel shows the superposition of all the structures in different colors.

Figure 13: 3d-SS option list. The molecules are highlighted in the field.

List of Figures

Figure 14: 3d-SS option list. The molecules are highlighted in the field with picking residues deviating less than $2 \AA$.

Figure 15: The molsoft graphics panel shows the superposition of all the structures in different colors after the core identification and extention process.

Figure 16.a: 3d-SS option list. Highlighted PDB ids are to superposed.

Figure 16.b: 3d-SS option list. Highlighted are the number of regions (10) to be used in the superposition.

Figure 16.c: 3d-SS option 'Zone ranges'. Starting and Ending residues represent the numbers defining the corresponding regions between the structures to be superposed.

Figure 17: \quad Superposition of the 9 dihydrofolate reductase structures after the imput of the CC region.

Figure 18: The molsoft graphics panel shows the superposition of all the shared common core structures each in a different color.

Figure 19: \quad Structure based alignment of the query (target) sequence with the vertebrate sequence (PDB id: 1U70).

Figure 20: \quad Structure based alignment of the query (target) sequence with the bacterial sequence (PDB id: 1ZDR)

Figure 21: Amino-acids sequence, Seq_1, for the query sequence representing the core region. The red highlighted are the amino-acids in the query sequence that different from the corresponding sequence of the core region in the template structure 1U70.

Figure 22: Amino-acids sequence, Seq_2, for the query sequence representing the core region. The red highlighted are the amino-acids in the query sequence that different from the corresponding sequence of the core region in the template structure 1ZDR.

Figure 23: APHM interface with input data.
Figure 24: APHM after execution.
Figure 25: The APHM 3D-viewer displaying the Mode created based Seq_1 and core regions suitable to the template structure 1 U 70 .

List of Figures

Figure 26: APHM after execution with the bacterial template structure 1ZDR and template regions (core regions) highlighted in red. Outlined in yellow show model building.

Figure 27: The APHM 3D-viewer displaying the Mode created based Seq_2 and cort regions suitable to the template structure 1 ZDR .

Figure 28: A schematic diagram of all the steps of homology modeling procedurt implimented to reach the final model.

Chapter III

Figure 01: Depiction from BLAST output sequence alignment run involving alignment search for the query sequence against the library of the nine chosen PDB sequences.

Figure 02: Amino-acids sequence from the Mus musculus, representing the core regions used in the model template.

Figure 03: Amino-acids sequence from the Geobacillus stearothermophilus, representing the core regions used in the model template..

Figure 04: The APHM 3D-viewer displaying the Model created based Sequence and regions suitable to the template structure 1U70

Figure 05: Structure based alignment of the query (target) sequence with the bacterial sequence (PDB id: 2ZZA).

Figure 06: \quad Structure based alignment of the query (target) sequence with the vertebrate sequence (PDB id: 1DR1).

Figure 07: Amino-acids sequence representing the core regions of human DHFR. Substrate and cofactor binding residues preserved in the final predicted model.

Figure 08: APHM interface page. An example showing model building successful execution that provide button for model structure visualization, white encircled, and button for downloading xyz coordinates, encircled in red.

List of Abbreviations

2D :	Two-Dimensional
3D :	Three-Dimensional
3d-SS :	Three-Dimensional Structure Superposition
A :	Angstrom
AA :	Amino acid
APHM:	Auto Protein Homology Modeling
BMRB :	Biological Magnetic Resonance Data Bank
CC :	Common Core
Cryo-EM :	Cryo-electron microscopy
Ca :	Central carbon α atom of amino acids
DHFR :	Dihydrofolate reductase enzyme
DNA :	Deoxyribonucleic Acid
EBI :	The European Bioinformatics Institute
EMA :	European Medicines Agency
FA :	Folic acid
FDA :	U.S. Food and Drug Administration
H:	Alpha-Helix
hDHFR :	human DHFR
ICM:	Internal Coordinate Mechanics
L :	Loop
NADP :	nicotinamide adenine dinucleotide phosphate
NCBI :	National Center for Biotechnology Information
NMR :	Nuclear Magnetic Resonance
PDB ID :	Protein Data Bank identifier
PDB :	Protein Data Bank
PDBe :	Protein Data Bank Europe
PDBj :	Protein Data Bank Japan
PIR :	Protein Information Resource
RCSB :	Research Collaboratory for Structural Bioinformatics
RMSD :	Root Mean Square Deviation
S :	Beta-Strand
SIB :	the Swiss Institute of Bioinformatics
SIFTS :	Structure Integration with Function, Taxonomy, and Sequence

List of Abbreviations

SSFS :	Sequence, Structure and Function Server
STamp	Structural Alignment of Multiple Proteins
TEM :	Transmission Electron Microscopy
THF :	Tetrahydrofolate
UniParc :	The UniProt Archive
UniProtKB :	The UniProt Knowledgebase
UniRef :	The UniProt Reference Clusters

Abstract

The construction of DNA is a very important process for growth, development and cellular reproduction as well as carrying genetic information, in which processes, supportive and essential enzymes intervene. Healthy cells reproduce normally but cells may be diseased and undergo abnormal cellular division resulting in pathology cases such as cancer. The quest to understand the enzymes involved in DNA creation allows understanding of how to deal with disorders and diseases related to unlimited and abnormal cell growth and division. It would also help understand microbial infections as this reply on bacterial cell reproduction.

Many studies in the field of structural biology have proven that three-dimensional structure of a protein gives deeper understanding of how proteins work and function. It is not always possible to carry out experimental structural studies and hence predicting the structure of a protein is one of the methods for studying their structure and function relationships.

Molecular modelling of protein structure enables to study catalytic amino-acids in active sites and other important sites and thus allows for putting hypotheses forward with the aim of understanding their roles in normal and disease situations. Such studies allow even for doing what has become known as rational design of new drugs that that may proof effective with limited side effects against various incurable diseases.

The aim of this study is to apply the molecular modelling methodology to predict and create a reliable structural model for the human Dihydrofolate Reductase enzyme - DHFR, which is part of the pool of biosynthesis reactions involved in the production of nucleotides that constitute DNA essential in cell division and cell proliferation.

The study resulted in the creation of a strategy of clear steps that enabled the production of a three-dimensional model of the human dihydrofolate reductase enzyme, and investigated the general rules that enable the analysis of the structure and function of this enzyme.

Abstract

This is in addition to creating an online bioinformatics application available from he bioinformatics-server page of the University of Saida: APHM \& Viewer tool that contributes to important stages of the molecular modelling and visual exploration. The tool aims at applying the strategy to general case for predicting the structure of other proteins and is available at the following link:

https://bioinformatics.univ-saida.dz/bit2/?arg=APHM\&ttl=Auto\%20Homology\%20Molecular\%20Modeling

Keywords:

Proteins, Enzymes, Dihydrofolate Reduction, 3D Structure, Molecular Modelling, Structure Prediction, Biological Function, Databases, Bioinformatics.

بناء الحمض النووي عملية مهمة جدا اللنمو والتطور والنكاثر في الخلية وأيضا حمل المعلومات الجينية، والتي تتخلل فيها انزيمات داعمة وأساسية، وقد تسلك الخلايا الطبيعية إما تكاثرا طبيعيا أو تكون هذه الخلايا مريضة وتبدي نتائج غير طبيعية كالسرطان. والسعي لفهم وظيفة الانزيمات المساعدة في بناء الحمض النووي تسمح بفهم كيفية النعامل مع الاختلالات والأمر اض المتعلقة بالنمو والانقسام الخلوي الغير محدود والغير طبيحي.

وقد أثبتت الكثير من الاراسات في مجال البيولوجيات الهيكلية أن البنية ثلاثية الأبعاد للبروتين تمنح مستوى أعلى لفهم كيفية عمل البروتين وبالتالي وظيفته، ويعتبر توقع بنية البروتين من أحدث الطرق لار اسة البنية حيث يمكن من استعراض الأحماض الأمينية التحفيزية للموقع الفعال وبذلك يسمح بإنثاء فرضيات بهيف تغيير أو تعديل هذا الانزيم وحتى القيام بما

أصبح يسمى بالتصميم العقلاني لأدوية جديدة أكثر فعالية ومحدودة الآثار الجانبية ضد مختلف الأمر اض المستعصية. الهدف من هذه الدراسة هو تطبيق منهجية النمذجة الجزيئية للتتبؤ وانشاء نموذج هيكلي ثاثي موثوق به لإنزيم اختز ال ثنائي هبدرو الفولات والذي هو جزء من سلسلة المراحل الداخلة في انتاج النيوكليوتيدات التي تثكل الحضض النووي الضروري في الإنقسام الخلوي و تكاثر الخلايا. انتهت الدر اسة بإنشاء استراتيجية من خطوات واضحة مكتت من إنتاج نموذج ثلاثي الأبعاد لإنزيم اختز ال ثنائي هيدرو الفو لات، وأرست قو اعد عامة تنكن من تحليل بنية هذا الانزيم ووظيفته و الآثار التركيبية والوظيفية للطفرات التي قد يحملها. هذا بالإضافة إلى إنثناء تطبيق متوفر على صفحة المعلوماتية_الحيوية لجامعة سعيدة يساهم في مراحل مهمة من عملية النمذجة الجزيئية و الإستكشاف يستهف تعميم تطبيق الإستراتيجية و هو منوفر على الرابط النتالي.
https://bioinformatics.univ-saida.dz/bit2/?arg=APHM\&ttl=Auto\ Homology\ Molecular\ Modeling
الكلمات المفتاحية:
البروتينات، الإنزيمات، اختزال ثنائي هيدرو الفولات، النمذجة الجزئية، التنبؤ بالبنية الفراغية، الوظيفة البيولوجية، قو اعد الييانات، المعلوماتية الحيوية.

Résumé

La construction de l'ADN est un processus très important pour la croissance, le développement et la reproduction cellulaire ainsi que le transport de l'information génétique, dans lequel interviennent des processus, des enzymes de soutien et essentielles. Les cellules saines se reproduisent normalement, mais les cellules peuvent être malades et subir une division cellulaire anormale entrâ̂nant des cas pathologiques tels que le cancer. La quête pour comprendre les enzymes impliquées dans la création de l'ADN permet de comprendre comment traiter les troubles et les maladies liés à la croissance et à la division cellulaires illimitées et anormales. Cela aiderait également à comprendre les infections microbiennes comme cette réponse sur la reproduction des cellules bactériennes.

De nombreuses études dans le domaine de la biologie structurale ont prouvé que la structure tridimensionnelle d'une protéine permet de mieux comprendre le fonctionnement et la fonction des protéines. Il n'est pas toujours possible de réaliser des études structurales expérimentales et donc la prédiction de la structure d'une protéine est l'une des méthodes pour étudier leurs relations structure et fonction.

La modélisation moléculaire de la structure des protéines permet d'étudier les acides aminés catalytiques dans les sites actifs et autres sites importants et permet ainsi d'émettre des hypothèses dans le but de comprendre leurs rôles dans des situations normales et pathologiques. De telles études permettent même de faire ce que l'on appelle la conception rationnelle de nouveaux médicaments qui peuvent s'avérer efficaces avec des effets secondaires limités contre diverses maladies incurables.

Le but de cette étude est d'appliquer la méthodologie de modélisation moléculaire pour prédire et créer un modèle structurel fiable pour l'enzyme humaine Dihydrofolate Reductase - DHFR, qui fait partie du pool de réactions de biosynthèse impliquées dans la production de nucléotides qui constituent l'ADN essentiel dans la division et prolifération cellulaire.

L'étude a abouti à la création d'une stratégie d'étapes claires qui a permis la production d'un modèle tridimensionnel de l'enzyme humaine dihydrofolate réductase, et a étudié les règles générales qui permettent l'analyse de la structure et de la fonction de cette enzyme.

Abstract

Ceci s'ajoute à la création d'une application bioinformatique en ligne disponible sur la page du serveur bioinformatique de l'Université de Saida: l'outil APHM \& Viewer qui contribue à des étapes importantes de la modélisation moléculaire et de l'exploration visuelle. L'outil vise à appliquer la stratégie au cas général pour prédire la structure d'autres protéines et est disponible au lien suivant :
https://bioinformatics.univ-saida.dz/bit2/?arg=APHM\&ttl=Auto\ Homology\ Molecular\ Modeling

Mots clés:

Protéines, enzymes, réduction du dihydrofolate, structure 3D, modélisation moléculaire, prédiction de structure, fonction biologique, bases de données, bioinformatique.

General Introduction

Proteins are among the most important molecules that can play a wide array of significant, important roles in all living cells, and are more diverse in structure and function than other classes of macromolecules due to their several unique threedimensional structures.

In the absence of experimental means for determining 3D-structure of macromolecules, prediction and modeling of protein structure are among the most important means of computational biology to help elucidate protein function chiefly depend on its 3D-structure. It would greatly expedite attempts to comprehend the building elements of cells and solve important medicinal queries through rational design for effective drug and development.

This study touches the objective of predicting a three-dimensional structure of a protein, the human dihydrofolate reductase by homology modeling, defining and characterizing its major steps and methods. The project resulted in the creation of a homology model based on similarity to known structures found in the Protein Databank (PDB). Important conclusion points have been drawn in relation to fundamentals of structure-function relationship preservation throughout the evolutionary history among different species. An online bioinformatics tool has also been implemented into executing some tasks relevant to homology model building.

The project is sub-divided along three major chapters:
$\stackrel{4}{4}$ The first chapter: Theoretical background
It talks about the general concepts and structure components of proteins also their structural levels, and several information about the chosen enzyme Dihydrofolate reductase for this study, as well as about the computational and experimental methods for determining the three-dimensional structure of protein.
$\stackrel{4}{4}$ The second chapter: Material and methods
The tools and material used in the homology modeling process steps are presented.

General Introduction

${ }^{4}$) The third chapter: Results and discussion

This chapter presents the results reached during this study, and their discussion as well as some important conclusions.
(4) General conclusion of major concepts touching upon the fundamental rules behind the biology function have ended the report in this thesis.

Chapter I: Theoretical background

Chapter I : Theoretical background

I. Wide concept of proteins

A protein attracts a great deal of attention because it's one of the most widespread and complicated macromolecules within living organisms, proteins do most of the work in cells and are required for the structure, function, and regulation of the body's tissues and organs. they are made up of hundreds or thousands of smaller units called amino acids, There are 20 different types of amino acids that can be combined to make a protein (see Appendix part I), they are linked by a peptide bond in a linear chain called a polypeptide.
However, so little is known about how a protein folds into the specific three-dimensional structure from its one-dimensional sequence, Therefore, many researchers and experts specializing in the study of biological research have been devoted since the last half of the twentieth century. (Deng H et al., 2018).

I.1.Protein structure

Amino acids are the building blocks of proteins, Within a protein, multiple amino acids are linked together by peptide bonds, thereby forming a long chain. Amino acids are organic compounds that contain an alpha (central) carbon atom ($\mathrm{C} \alpha$) linked to an amino group, a carboxyl group, a hydrogen atom, and a variable component called a side chain specific to each amino acid, All AA have the same basic structure (figure 01). Peptide bonds are formed by a biochemical reaction that extracts a water molecule when the carboxyl group of one molecule reacts with the amino group of the other molecule (figure 02). Thus, we can say that the basic primary structure of proteins is the linear sequence of amino acids. (Reddy M-K., 2020).

Figure 01. Amino Acid structure (PJ Russell, 2010)

Chapter I : Theoretical background

Figure 02. Peptide bond formation (credit: Biochemistry Glossary).

II. Levels of protein structure

Protein structure is categorized in terms of four levels:

II.1.Primary structure

It is the simplest level of protein structure, The primary structure is simply the sequence of amino acids that make up the polypeptide chain linked by peptide bonds as mentioned earlier. Because of the nature of the peptide bond, the backbone of a polypeptide will have a single primary amine at one end and a single carboxylic acid at the other end (they do not take part in a peptide bond), The two ends of each polypeptide chain are known as the amino terminus (N terminus) and the carboxyl terminus (C-terminus) and The sequence of a polypeptide is always read from the N -terminus to the C-terminus (Figure 03). And the size (length), and specific amino acid sequence of a protein are major determinants of its shape, and the shape of a protein is critical to its function. (OpenStax College, Biology). (Figure 04).

N-terminus DIVLTQSPSSLSASLGDTITITCHASQNINVWLSWYQQKPGNIPKLLIYKA SNLHTGVPSRFSGSGSGTGFTLTISSLQPEDIATYYCQQGQSYPLTEGGGTKLEIKRADAA PTVSIFPPSSEQLTSGASVVCELNNFYPKDINVKWKIDGSERQNGVLNSWTDQDSKDSTYS MSSTLTLTKDEYERHNSYTCEATHKTSTSPIVKSFNRNEC C-terminus

Figure 03. The sequence of a polypeptide chain from an antibody, with the N - and the C-terminus. (credit: Structural Bioinformatics Group).

Chapter I : Theoretical background

Figure 04. The primary structure of a protein is the sequence of amino acids. (credit: modification of work by National Human Genome Research Institute)

II.2. Secondary structure

Proteins are dynamic entities, and they possess inherent flexibility because of the nature of the bonds that hold the amino acids together. Local folding of the polypeptide chain into helices and sheets occurs when the chain is sufficiently long, by forming a hydrogen bond between amine and carbonyl functional groups within the peptide backbone (except for the R side group), These shapes constitute a protein's secondary structure the most common secondary structures namely the α-helix and β-pleated sheet and turns.

Figure 05. The secondary structure of a protein may be an α-helix or a β-pleated sheet or both

Chapter I : Theoretical background

II.2.1 Types of secondary structure

II.2.1.A The α-helix:

The alpha-helix is a right-handed helical coil, the helix is held by hydrogen bonds between the oxygen atom in a carbonyl group of one amino acid and the hydrogen atom of the amino group that is just four amino acid units farther along the chain. (Ibraheem R et al,2021)

Figure 06. Alpha- Helix (Jawahar Swaminathan, 2008)
Types of Alpha Helix: There are three types, (Each of the three examples below in the table is a decapeptide fragment derived from a protein structure in the Protein Data Bank (PDB)):

Table 01. Three types of alpha-helix (Lam et al., 2020)

3 $\mathbf{1 0}_{0}$ helix	α-helix	π-helix
It has 3 residues per helical turn in a 10 atom ring, it provides insight into the initiation of $\alpha-$ helix folding. Because of the $\alpha-$ helices tendency.	It has 3.6 residues per helical turn and has 13 atoms in the ring formed by the hydrogen bond and so can also be called a 3.6-13 helix.	Is even less common. It is a wider residues per turn.
From 3179: 514-525	From 1HHO chain B: 5-16	

Chapter I : Theoretical background

II.2.1.B The $\boldsymbol{\beta}$-pleated sheet

William Astbury was the first to propose the first β-sheet structure in the 1930s, Beta sheets consist of beta strands (β-strands) connected laterally by at least two or three backbone hydrogen bonds, forming a generally twisted, pleated sheet. A β-strand is a stretch of polypeptide chain typically 3 to 10 amino acids long with backbone in an extended conformation. It is called the pleated sheet because of the wave like appearance.(Manske M., 2001)

Figure 07. Beta-sheet (Lever.G, 2015)
Types of Beta Sheets: There are three types, parallel and anti-parallel sheets, β-Barrel moti, Parallel beta-sheets are chains of polypeptides that run in the same direction. Anti-parallel betasheets are chains of polypeptides that run in opposing and alternating directions. figure $\mathbf{0 6}$

Figure 08. Parallel beta-sheet

Antiparallel beta-sheet

The three parallel and anti-parallel strands are shown in both cartoon format (left) and in stick form containing backbone atoms N, CA, C, and O' (right). Hydrogen bonds are identified by

Chapter I : Theoretical background

arrows connecting the donor nitrogen and acceptor oxygens. Strands are numbered according to their relative position in the polypeptide sequence. (J.S. Richardson \& D.C. Richardson, 1992)

Beta barrel: It is made up of tandem repetitions that twist and coil to form a closed cylinder structure, in which the last strand is hydrogen bonded to the first strand.

Figure 09. Beta Barrel (PDB: 1A0S)

Chapter I : Theoretical background

II.2.1.C Turns and Loops

A turn is a structural motif where the $\mathrm{C} \alpha$ atoms of two residues separated by a few (usually 1 to 5) peptide bonds are close (less than $7 \AA$ [0.70 nm$]$). colored by element figure $\mathbf{0 8}$.

Figure 10. Turns and Loops: (PDB- entry 1TPD)

Chapter I : Theoretical background

II.2.2 Ramachandran Plot

Ramachandran plot is a two-dimensional (2D) plot of the torsional angles of amino acids φ (phi) and $\psi(\mathrm{psi})$ in a protein sequence, with allowed regions for conformations where there is no steric interference. (Pan A et al., 2021)

Figure 11. Importance and determinants of Secondary structure (Ramachandran plot) (Pan A et al., 2021)

Chapter I : Theoretical background

II.3.Tertiary structure

Is called three Dimensional structure of the polypeptide, it's due to the interactions between the R groups of the amino acids, in this level the polypeptide chains become functional by presenting a functional group on its outer surface which allows her to get a function of her own and a specific 3-Dimensional shape, it takes many forms (Globular Proteins which the Most proteins fall into this category, by forming a compact ball shape, and Fibrous Proteins which made of fibers often consisting of repeated sequences of amino acids), We can observe interactions that make up the tertiary structures of proteins that are covalent and non-covalent They guide the twisting and bending that help the protein molecule achieve a stable state. (Figure 12). (Larry Li, 2014)

Figure 12. The tertiary structure (variety of attractive forces).(Credit: OpenStax Biology).

Chapter I : Theoretical background

II.4.Quaternary structure

Protein quaternary structure is the fourth (and highest) classification level of protein structure.
Protein quaternary structure refers to the structure of proteins that are themselves composed of two or more smaller protein chains.

Figure 13. Quaternary Structure.(Uday H,.n,d)

Chapter I : Theoretical background

III. How Do Proteins Arrive at Their Final Shapes?

Proteins achieve their ultimate structures without any energy input once their amino acids are linked together. and there are proteins called chaperones that assist in protein folding and have the ability to prevent non-specific aggregation by binding to non-native proteins. (Hartl, F. U\& Hayer M,. 2009).

Figure 14. Protein structure has four levels of organization (credit: CNX OpenStax).

Chapter I : Theoretical background

IV. Protein classification:

Proteins can be described according to their large range of functions in the body, listed in alphabetical order:
Table 02. Examples of protein functions (Marcella M, Meredith T., 2012)

Function	Description	Example
Antibody	Antibodies are protective proteins produced by the immune system in response to the presence of a foreign substance, such as viruses and bacteria.	Immunoglobulin G (IgG)
Enzyme	Enzymes help to make new molecules by reading the genetic information in DNA, and speed up almost the thousands of chemical reactions in cells.	Phenylalanine hydroxylase (4sub units)
Messenger	Such as hormones, which transmit signals of biological processes between cells, tissues, and various organs.	Growth hormone
Structural component	These proteins give cells shape and support. They also allow the body to move	Actin (multiple sub units)
Transport/ storage	These proteins bind and carry atoms and small molecules within cells and throughout the body.	Ferritin (24 subunits)

Chapter I : Theoretical background

V. Dihydrofolate reductase enzyme (DHFR)

V.1. Enzymes

Enzymes are macromolecular biological catalysts that catalyze chemical reactions. The molecules at the start of the process on which enzymes can function are known as substrates, and the enzyme changes these molecules into new molecules known as products. (Stryer \mathbf{L} et al., 2002)

V.2. Background of Dihydrofolate Reductase

(EC 1.5.1.3.) is a key enzyme in folate-mediated one-carbon metabolism, Dihydrofolate Reductase was discovered in the late 1950s. Because of DHFRs vital role in DNA synthesis, it was targeted for cancer chemotherapy; and it was chosen as the Protein Data Bank's Molecule of the Month for October of 2002. (Futterman, S. 1957)

DHFR is a small enzyme that plays a supporting role, such as producing cofactors that are necessary for DNA synthesis, and is found ubiquitously in all dividing cells of prokaryotes and eukaryotes but each being makes a slightly different version of the other, the version from bacteria, shown on the left is smaller and more streamlined than the version in our own cells, shown on the right with PDB entries, As seen in these structures, both bind similarly to NADPH, (Smith SL et al., 1979)

Figure 15. Bacterial left (3DFR) and human right (1DLS) dihydrofolate reductase
(Goodsell., 2002)

Chapter I : Theoretical background

V.3. Human DHFR

The following table shows information about the dihydrofolate reductase enzyme in humans:

Table 03. General information of dihydrofolate reductase enzyme gene, structure, and active site. (Abali EE et al., 2008)

The enzyme gene	DHFR gene, found in chromosome 5 (region: $\mathrm{q} 11 \rightarrow \mathrm{q} 22$). Length and weight
Structure studies	A monomeric molecule with many secondary structural elements (eight-stranded beta-sheet and four alpha-helices with connecting loop regions).
Subdomains	Is divided into two: - the adenosine-binding subdomain: is the larger one and binds the adenosine moiety of NADPH. the loop subdomain: contains three loops, the Met-20 loop, the F-G loop, and the G-H loop.
Active site	the active site is between the two subdomains along groove where folate and NADPH bind, and the movements of the two subdomains regulate the size of the active size.

V.3.1. What is the function of dihydrofolate reductase DHFR?

DHFR has a critical role in regulating the amount of tetrahydrofolate in the cell. Tetrahydrofolate and its derivatives are essential for purine and thymidylate synthesis which are important for cell proliferation and cell growth, The physiological function of (DHFR) is converting dihydrofolate into tetrahydrofolate. (Abali EE et al., 2008)

Chapter I : Theoretical background

V.3.2. Mechanism of action

This enzyme has a steady-state random and stepwise mechanism, Specifically, the catalytic reaction begins with the NADPH, where DHFR catalyzes the transfer of a hydride from NADPH to dihydrofolate (its promote by the Met20 loop which helps stabilize the nicotinamide ring of the NADPH) (figure 14), followed by protonation to produce tetrahydrofolate. In the end, dihydrofolate is reduced to tetrahydrofolate and NADPH is oxidized to NADP+. (Osborne MJ et al., 2001)

Figure 16. The reduction of dihydrofolate to tetrahydrofolate catalyzed by DHFR.

Figure 17. DHFR (Met20 loop) + NADPH + folate.

Chapter I : Theoretical background

V.3.3. DHFR uses in biotechnology

Dihydrofolate reductase is a crucial enzyme for the synthesis of purines, pyrimidines, and some amino acids. Biochemicals that act as substrates for DHFR have many applications in biochemical and physiological research, for example, Because of its critical role in DNA precursor synthesis, DHFR is an interesting pharmaceutical target for inhibition. (Cowman AF

\& Lew AM, 1989)

V.3.4. Dihydrofolate reductase as a therapeutic target

For several years, the DHFR enzyme has been recognized as a therapeutic target in cancer treatment, and new compounds are being discovered having the ability to inhibit this enzyme continues to pique the interest of medicinal chemists. Recently discovered dual compounds that inhibit DHFR as well as other folate receptors (FRs) and have interesting antitumor properties, Aminopterin was the first drug used in cancer chemotherapy. It binds to dihydrofolate reductase 1,000 times stronger than folate and blocks its action. (Goodsell, 2002).

V.3.4. Relevance of DHFR Inhibitors in therapy

DHFR inhibitors are used to treat fungal, bacterial, and mycobacterial infections, as well as malaria and other protozoal infections. (Srinivasan B et al.,2019).

The table below shows two examples of DHFR inhibitors that have been approved.
Table 04. DHFR inhibitors that have been approved. (Raimondi M et al.,2019).

Antifolate	Status	Indication	Toxicity
Methotrexate	Approved in 1985 by FDA and EMA.	Treatment of lymphoma, acute lymphoblastic leukemia, osteosarcoma	Symptoms of overdose include bone marrow suppression and gastrointestinal side effects
Pralatrexate	Approved in 2009 by FDA and EMA .	Treatment of relapsed or refractory peripheral Tcell lymphoma (TCL)	Mucositis

Chapter I : Theoretical background

VI.Methods for determining protein structures

This field includes many techniques, and it can be determined by either experimental methods or computational methods, Each method is characterized by certain controls, in this part, the various methods will be described briefly.

VII. Experimental methods

X-ray crystallography and NMR spectroscopy and cryo-electron microscopy are currently the three major experimental techniques for protein structure determination all of them are, however, time- and manpower-consuming, the most used technique is X-ray crystallography with over 89% of structures deposited in Protein Data Bank, followed by NMR over 8%, and Cryo-EM about $2,5 \%$, and the remaining 0,5 structures were solved using other methods. (Mutharasappan N et al., 2020)

VII.1. X-Ray Crystallography

VII.1.1. Definition

The goal of x-ray crystallography is to produce a three-dimensional molecular structure from a crystal. Using the measured x-ray diffraction intensities, Based on the angles and intensity of those deflected rays, the crystallizer produces a three-dimensional picture of the electron density inside the crystal. Based on this electron density, the locations are known as an arithmetic mean of the atoms within the crystal, as well as their chemical bonds, entropy, and other information. . (Smyth, M. S., Martin, J., 2000). As first it used to determine the threedimensional structures of inorganic materials, then small organic molecules deal with a small number of atoms, and finally, macromolecules like DNA and proteins determine a much larger number of atomic positions.(Drenth J, 1994).

Figure 18. The main components of a X-Ray powder diffractometer including a goniometer (courtesy of Malvern-PANalytical B.V.n,d)

Chapter I : Theoretical background

VII.1.2. Protein X-ray crystallography:

Protein crystallography requires a consistent source of protein as well as a purification/concentration technique that yields high-quality, homogenous, soluble material. It starts with obtaining crystals this step remains a bottleneck for this technique including obtaining large amounts of pure protein through well-established molecular biology experiments such as molecular cloning and affinity chromatography. Then Once crystals of suitable size and composition are obtained, it is necessary to bombard the crystal with x-rays and observe the diffraction pattern, Dr. Ten Eyck said that we can use the fast fourier transform (FFT) for the calculation of structural factors after having the data of amplitude and phases.the finally improving the quality of the electron density map by the refinement step. (Mutharasappan et al., 2020) These steps are illustrated in the figure below

Figure 19. Workflow for solving the structure of a molecule by X-ray crystallography
(Drenth J, 1994).

Chapter I : Theoretical background

VII. 2 Nuclear Magnetic Resonance (NMR)

VII.2.1 Definition

Nuclear magnetic resonance (NMR) spectroscopy is one of the most powerful physicochemical analysis techniques used in quality control and research for determining the content and purity of organic, organometallic, and biochemical molecules. Generally, the identification of compounds is complemented with data obtained with other techniques, NMR spectroscopy can be used as a quantitative analysis tool when the proportionality between the area of the signals and the number of nuclei that generate it. The time period of the NMR spectrometer is relatively long, so it is not suitable for observing fast phenomena and only gives an average spectrum. (Héctor Zamora, C., 2021)

Figure 20. Components of an NMR equipment. (García Álvarez et al., 2016)

VII.2.2. Principle

According to the NMR principle, all nuclei have a charged electrically, and spin, when an external magnetic field is applied Transfer of energy is possible from base energy to higher energy levels, and The transfer of energy occurs at a wavelength that coincides with the radio frequency Also, energy is emitted at the same frequency when the spin returns to its base level. As a result, the processing of the NMR spectrum for the concerned nucleus is yielded by measuring the signal that fits this transfer. (Aryal S., 2021)

Chapter I : Theoretical background

VII.3. Cryo-electron Microscopy

VII.3.1. Definition

Cryo-electron microscopy (cryo-EM) is an advanced structural molecular and cellular biology technique used to visualize the structural features of proteins, This technique complements x-ray crystallography because it reveals structural details without the need for a crystalline specimen. In this technique, specimen preparation is an important step where in the solution the biomolecules are rapidly frozen, Cryo-EM can determine structures with specimens starting molecule weight of around 50 KDa which is the upper limit of NMR. (Mutharasappan et al., 2020).

Figure 21. Machine of the Cryo-EM (Elizaveta Galitckaia,.2019)

Chapter I : Theoretical background

VII.3.2 Principle

Cryo-EM works on the principle of transmission electron microscopy (TEM) imaging the radiation-sensitive samples under low-temperature conditions, including the basic steps of sample preparation, and image processing, structure analysis. To Perform Cryo-EM start with the first step is t purify, in which a buffer solution must be used that maintains the biochemical activity of the sample to be pure and with high concentration particles, which makes it easy to study under the microscope. Then the stage of Plunge Freeze so that the sample freezes to be placed on a TEM grid, to be transferred to the stage of conversion to the frozen sample is placed on a specialized TEM holder to maintain the temperature of liquid nitrogen, then the transmitted electrons are detected and form recorded images that are magnified by factors. Computer programs then solve the detailed structure of the sample from the magnified images. (Warwick,T,. 2018).

Figure 22. Workflow of cryo-EM structure determination. (Wang H,. 2015)

Chapter I : Theoretical background

VIII. Biological databases, and high-throughput data sources

Before addressing computational methods, this is an identification of some of the necessary sites and databases used in these approaches:

VIII.1. Protein Data Bank (PDB)

It is the largest protein database that contains only experimentally resolved structures and is submitted by biologists and biochemists from around the world. used by various persons like scientists, bioinformatics, biologists and biochemists who use structure or sequence databases. Here we will learn protein databases (PDB), which have all known 3D structures of proteins. To find the PDB on the web search online by exploiting the webserver:

https://www.rcsb.org/

You can download the protein structure data (i.e, the PDB files) you need in your studies to your computer. On the PDB homepage type the keyword/name of your protein in the search bar, and in the left you can select the organism to filter out the proteins associated. Each PDB file has a special name and coordinates of all the atoms in the protein ($\mathrm{x} ; \mathrm{y} ; \mathrm{z}$). (Taimoor \mathbf{k}, 2020)

Figure 23. A screen shot of PDB - Protein Data Bank home page

Chapter I : Theoretical background

Every structure in the PDB is given a four-character alphanumeric identification known as PDB ID (the PDB identifier). Eg: "1MVS".

VIII.1.2. PDB Members

The PDB is overseen by an organization called the Worldwide Protein Data Bank, wwPDB, and it has four members RCSB PDB, PDBe (Europe), PDBj (Japan), and BMRB (USA), to ensure the PDB archive is global and uniform. The RCSB PDB presently acts as the "archive keeper", The archive is updated once a week and it is distributed by wwPDB sites via FTP. (Berman H et al.,2007).

Figure 24. PDB Members(Berman H et al., 2007).

VIII.1.2.1 Protein Data Bank (RCSB)

Provides freely and publicly searching available to the global community for macromolecular structural data, Ligands, sequence-structure comparisons, 3D shapes of proteins, and nucleic acids. And also provides a renewed view of the molecule of the month, a feature for the phone called RCSB PDB Mobile, other educational resources at PDB-101, and more.

VIII.1.2.2 Protein Data Bank Europe (PDBe)

(PDBe http://www.ebi.ac.uk/pdbe/), is an important resource for high-quality molecular structures and related data and is also rich in information about all entries, It has many activities as an initiative "Structure Integration with Function, Taxonomy and Sequence" (SIFTS), and provides advanced visualization such Atlas pages, and validation of NMR and EM structures

Chapter I : Theoretical background

tools for bioinformaticians, and different advanced services such as PDBe PISA, PDBe Fold, PDBe Motif. (Velankar et al., 2009).

VIII.1.2.3 Protein Data Bank Japan (PDBj)

(PDBj, http://pdbj.org), provides a comprehensive range of services and tools for evaluating protein structures and functions, accepts and executes PDB entries mostly from Asia and Oceania, and browses in multiple languages, including Japanese, Chinese, and Korean. And more (Kinjo A et al., 2011)

VIII.1.2.4 Biological Magnetic Resonance Data Bank (BMRB)

BMRB gathers data from NMR spectroscopy studies of physiologically relevant compounds and distributes them (in the public domain worldwide). The purpose is to help scientists analyze the structure, dynamics, and chemistry of biological systems. (Eldon L et al., 2008).

Chapter I : Theoretical background

VIII.2. What is a FASTA file?

A FASTA file is a text file for representing peptide or nucleotide sequences, The first line after the symbol " $>$ " is a comment that provides relevant information about the sequence (the sequence name). and The remaining lines are the amino acid sequence in the single letter code. The amino acid codes supported (22 amino acids and 3 special codes) (see Appendix part I).

VIII.2.1 Example of FASTA file:

VIII.2.2 How do you find FASTA sequence?

There are many ways, for example, can be obtained by accessing the Uniprot website, and after choosing the required protein page, there will be a button at the bottom that directs you to FASTA file as shown :

Downoald FASTA

file button
\square
Isoform 1 (identifier: P00374-1) [UniParc] \pm FASTA 界 Add to basket This isoform has been chosen as the canonical ${ }^{1}$ sequence. All positional information sequence that appears in the downloadable versions of the entry.

Figure 25. A screenshot of FASTA file from UniProt site.
And the other way is from the NCBI, by Accessing the Download option on the toolbar to download FASTA sequence and other data.

Figure 26. A screenshot of the FASTA file from NCBI site.

Chapter I : Theoretical background

VIII.3. BLAST (Basic Local Alignment Search Tool) - NCBI

Developed by the National Center for Biotechnology Information which is a part of the National Library of Medicine, It is an algorithm available on the site https://blast.ncbi.nlm.nih.gov/Blast.cgi, It compares the sequences of proteins and nucleotides, "query" with other databases of protein and nucleotides. so that it detects short matches between the two sequences, aligns, and gives the statistical information about them, this is called the "expect" value, When the E-value for sequence alignment is 0.05 indicates that this similarity has a 5 in 100 (1 in 20) probability of happening by chance alone.

NCBI's WebBLAST offers four main search types: (figure 23)

- BLASTn (Nucleotide-nucleotide BLAST): It makes a comparison between DNA (nucleotide) "query" against a database of nucleotide "subject" sequences that the user specifies.
- Blastx (Nucleotide 6-frame translation- protein): Compares a nucleotide query sequence resulting in six-protein sequences against a database of protein.
- tBlastn: compares a protein query sequence against the six-frame translations of a database of nucleotide sequences.
- Blastp (Protein BLAST): compares one or more protein query sequences to a subject protein sequence or a database of protein sequences.

BLAST has adaptations in blastp such as PSI-BLAST (for iterative protein sequence similarity searches using a position-specific score matrix) and RPS- BLAST(for searching for protein domains in the Conserved Domains Database). (Johnson M et al., 2008)

Figure 27. BLAST homepage showing the four options of BLAST.

Chapter I : Theoretical background

VIII. 4 UniProt

UniProt is the universal protein resource, maintained and produced by the UniProt Consortium a collaboration between several European bioinformatics organizations (EBI), (SIB), (PIR). It provides a database containing large information about protein sequence and biological processes and obtained many entries from genome sequencing projects. And progress three key databases: UniProtKB (with sub-parts Swiss-Prot and TrEMBL), UniParc, and UniRef. (Pundir S et al., 2016).

Figure 28. A screen shot of UniProt web page

VIII.4.1 Uniprot Tools

It has five major tools available on their own dedicated pages on the UniProt website :

VIII.4.1.a. Align (Multiple Sequence Alignment Tool)

Alignment means the writing process of two or more sequences, one on top of the other to find areas of similarity in the entries being aligned and make identities appear. Each alignment corresponds to an id\% score, which can be calculated as the identity percentage (number of identities/length of alignment) during sequence editing. (Deléage G et al., 2021)

Chapter I : Theoretical background

VIII.4.1.b. BLAST (Basic Local Alignment Search Tool)

Discovers areas (regions) of local similarity between sequences, The evolutionary and functional relationships between the sequences are identified by the BLAST results and more. Provides also a Running BLAST on a protein from the protein entry page.

VIII.4.1.c. Retrieve/ID Mapping

Allows to 'map' or convert identifiers from UniProt to Hundreds of external databases, to which UniProt is referred, It also contains many different databases such as Genome annotations, Sequence, 3D Structure, and more.

VIII.4.1.d. Peptide search

It is a tool that provides to input peptide sequences with at least three residues and identify all UniProtKB sequences with an exact match to the query sequence.

VIII.4.1.e. SPARQL

It is an endpoint that enables asking complex queries for analytical or data integration reasons that are difficult or hard to do using the Entry oriented web services. (Pundir S et al., 2016).

Chapter I : Theoretical background

VIII. 5 3-Dimensional Structural Superposition server (3d-SS)

A software or web-based interactive computing server that Superpose two or many 3D protein structures, Where it finds the common and constant water molecules in all the superposed homologous protein structures, The molecular visualization tools RasMol or Mol-soft ICM browser can be used with the server to visualize the superposed 3D structures by saving the superposed 3D atomic coordinates in the client machine.

This process is mainly done by entering the PDB-ID (s) of each protein or its load the atomic coordinates in PDB format. (Sumathi K et al., 2006).

The web server is reachable on the website:
http://cluster.physics.iisc.ernet.in/3dss/

Figure 29. 3d- SS (3-Dimensional Structural Superposition server) homepage.

Chapter I : Theoretical background

There are four major options provided in the proposed computing server:
a. Superpose only two structures.
b. Superpose several structures.
c. Superpose subunits within a structure.
d. Superpose different models present in NMR ensemble.

All the above options, Allow selecting structures available in PDB either by loading them from the 3D atomic coordinates (PDB format) from the local hard disk or by entering its unique PDB-ID. After downloading, it automatically displays all the details of the structure string in a specific format. It can also select the full file, set the whole string, or specify part of the mod.

$3 d-5 s$

3-Dimensional Structural Superposition

O Superpose only two structures

- Superpose several structures
- Superpose subunits within a structure
- Superpose different models present in a NMR ensemble

Figure 30. 3d- SS options from the web page (Sumathi K et al., 2006).

Chapter I : Theoretical background

IX. Computational and theoretical methods

Since the experimental method costs a lot and some proteins structure could not be found by this method, more practical and easier techniques have been resorted to by developing bioinformatics programs to predict the structures of proteins directly from a sequence Given an amino acid sequence (i.e., the primary structure), the objectives are to determine all helical segments and all beta-strands and residues.

The approaches are classified into three major theoretical methods for predicting the structure of proteins: Homology /comparative modeling, fold recognition, and ab initio prediction.

IX.1. Homology modeling:

Also called Comparative modeling, it's one of the most used methods for protein structure prediction, it predicts the 3-D structure of the sequence of protein (amino acids) "target" based on its alignment to one or more proteins with a known structure as a "template" stored in the PDB . since proteins that have similar sequences usually have similar structures (50% or better sequence identity would be good), we can use the structural information of the known structure for modeling the target protein if we have a similarity. (Dorn M et al.,2014)

In this method, the 3D structure of a protein is obtained with the following six steps:

IX.1.1. Identification of target sequence

The sequence target is taken by experimental methods or from protein databases like UniProt.

IX.1.2. Sequence alignment

The second step is the alignment of the target and template sequences.

IX.1.3. Structure templates identification

Once optimal alignment is achieved, can copy the coordinates of the corresponding residues of the template proteins onto the target protein.

IX.1.4. Core structure calculation

At this stage, the selected sequences are used to find the invariant and common structural features present between their 3D-structures by superposition of the protein structures.

IX.1.5. Loop regions and residues building

This step includes the addition and optimization of side-chain atoms and loops.

Chapter I : Theoretical background

IX.1.6. Final model

The final step involves the overall quality of the model created.

Figure 31. Steps in homology model building process. (Sliwoski G et al., 2013)

Chapter I : Theoretical background

IX.2. Fold recognition or "Threading"

This method is used to model those proteins which have the same fold as proteins of known structures, to match sequences without known structures with the protein folds. (Structural template detected from fitness to fold (threading)).

There are three main steps in this method: (Figure 32)

1) The construction of a structure target database based on templates.
2) Calculation of the quality of each model.
3) Selecting the best model.

Figure 32. The three main steps of threading. (Kumar S et al., 2012).

Chapter I : Theoretical background

IX.3. Ab initio prediction

It's the prediction of protein structure without using a homolog (or analog) structure, Ab initio predict protein structure based on physical models, they are indispensable complementary methods to Knowledge-based approach.

Figure 33. The ROSETTA protocol flowchart Fragments are generated from unrelated protein structures in the PDB before being used to assemble full-length models using simulated annealing simulations guided by a knowledge-based force field.

The selected models are refined at the atomic level in the second phase using a physics-based potentia. (Lee J et al., 2017).

Chapter I : Theoretical background

X . Why is it so important to understand a protein's three-dimensional structure?

A protein's biological function is dictated by the arrangement of the atoms in the threedimensional structure of the protein, and thus it is possible to know how the protein interacts with other proteins by recognizing the arrangement of the catalytic residues of the active site

The presence of the 3-D structure of the protein allows us to understand how it works in a high way and level, such as knowing how to control it or modify it by creating hypotheses, such as making special mutations for this protein to change its function. And there are more features.

Figure 34. The three approaches of protein structure prediction. (Darnell S, 2020).

Chapter II : Material and Methods

Objectives:

In this study, the attempt is to apply the Homology Molecular Modeling methodology, known also Comparative Modeling, to predict and create a reliable structural model for a query (target) protein starting from its amino-acids sequence.

For predicting the structural model, this method is based on using the high similarity (homology) of the amino-acids sequence of the target protein with other proteins of known 3D-structure.

Comparative Modeling Steps:

I. Selection of a target protein and amino-acids sequence:

The protein target selected for this structure prediction project is the human Dihydrofolate Reductase (DHFR) which is an enzyme involved in the synthesis of raw material necessary for cellular proliferation, found in both prokaryotic and eukaryotic cells.

DHFR has a critical role in the cellular regulation of tetrahydrofolate and its derivatives' amounts that are essential for the synthesis of purine and thymidylate in turn are important for cellular division and growth, see Chapter I, section DHFR Function.

Such an important role made DHFR a potential target for structural elucidation through a number of methods including structure prediction in studies aiming at rationally designing new effective drugs against cancer disease and virulent microbial infection both pathologies being based on cellular proliferation. This is in addition to better understanding of ligand binding details to DHFR and structure-function relationship fundamentals. The DHFR amino-acids sequence represented with single letter codes is shown displayed below in Figures 2 and 3.

II. Homology molecular modeling:

This is a complex of interconnected set of steps are realized in this project in manual to semiautomatic procedure to serve deep understanding of the rational behind the technique for academic (teaching) and research purposes. The modeling steps outlined next are followed in the prediction of 3D-structure starting from the knowledge of amino-acid sequence based on homology and sequence similarity as developed in the method "Auto Protein Homology Modeling" (Rachedi A.,1994). Such methodology has become common and part of most methods of molecular modeling as discussed in reviews in the subject (Haddad Y et al,.2020).

Chapter II : Material and Methods

The steps are summarized in the following:

II.1. Identification and extraction of target sequence

II.2. Sequence alignment

II.3. Structure templates identification

II.4. Core structure calculation

II.5. Amino-acids side-chains building

II.6. Loop regions building

II.7. Final model

II.1. Identification and extraction of target sequence

Dihydrofolate Reductase sequence target has been selected as explained above and extracted from the Uniprot database (UNIversal PROTein database) in the following procedure:

Usually in this type of projects, the target's amino-acid sequence is obtained by experimental methods e.g. by extraction, purification and sequencing. However, due to nature of this project being purely bioinformatics based, a human DHFR sequence bearing the accession code P00374 has been extracted from the UniProt database via the use of the following website address: https://www.uniprot.org/

In the "Query" field representing the Protein Knowledgebase (UniProtKB) module of the database, the accession code P00374 has been provided to use for the search, Figure 01.

Figure 01. Screenshot of the process of obtaining the amino-acids sequence by entering the string for the DHFR in the Query field UniProtKB as indicated by the arrow. (The UniProt Consortium, 2021)

Chapter II : Material and Methods

After studying the result page and by scrolling down to the 'Sequence' section, the protein sequence is located as shown in Figure 02 and the sequence is downloaded in FASTA format, see Figure 03. FASTA format is the standard format for representing amino-acids sequences and necessary for use in the subsequent steps.

Figure 02. The Open-format of the selected human DHFR amino-acids sequence. The sequence in FASTA format is downloaded by clicking on \downarrow FASTA the link as pointed at by the red arrow.

```
>sp|P00374|DYR_HUMAN Dihydrofolate reductase OS=Homo sapiens OX=9606 GN=DHFR
PE=1 SV=2
MVGSLNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTTSSVEGKQNLVIMGKKTWFS
IPEKNRPLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSS
VYKEAMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGIKYKF
EVYEKND
```

Figure 03. The amino-acids sequence of the human DHFR in FASTA format was downloaded from the UniProt database as explained in text above. The first

Chapter II : Material and Methods

line after the symbol " $>$ " is a definition line that provides relevant information about the sequence. The remaining lines are the amino-acids sequence represented in the single letter code of amino-acids.

II.2. Sequence alignment

This second step is used to find proteins of known 3D structures and sequences that are as similar as possible to the DHFR target. The Basic Local Alignment Search Tool (BLAST) is used, with default parameters within the application scope of this project, to compare pairwiely the target sequence with a database of sequences and identify a list of sequences that share high similarity with query sequence above a certain threshold (sequence identity percentage and similarity score value) as reported in the following:
A. BLAST tool, see Figure 04, is evoked by using the webserver address:
http://blast.ncbi.nlm.nih.gov/Blast.cgi

Figure 04. Screenshot image showing the home page of BLAST and the tools it carries. The option "protein blast", pointed to with a red arrow, is chosen to restrict the alignment procedure to using the protein database.

Chapter II : Material and Methods

The procedure for running BLAST to search the protein sequences database aims at finding similar proteins to the target sequence. Since the prediction is for structural modeling, the PDB based sequences library is selected to be used in the BLAST search as highlighted in Figure 05.

Figure 05. The target sequence in FASTA format is pasted in the window field 1 at the top of the page. The "Protein Data Bank proteins (PDB)" is selected a the database to search against 2 . Since the alignment is between protein

Chapter II : Material and Methods

sequences, the algorithm blastp (protein-protein BLAST) is selected 3 . Finally the BLAST button is pressed to start the search.

BLAST server, after a few moments, produced the alignment and gave a list of matching sequences ordered primarily according to their "sequence identity" percentage with the target DHFR sequence Figure 06. The "sequence identity" percentage, pointed at by the red arrow in the figure, represents the estimation of how many identical amino-acids are shared between the aligned sequence where the larger the value mean the close the sequences to each other are.

Other alignment evaluation values such as:

- "Score", pointed at by the blue arrow. Represent the alignment score calculated based on rates of amino-acids substitutions the total value of which should be bigger than zero for related sequence. The larger the score the value the better the alignment is.
- "Expected" value (E), pointed at by the green arrow. Represent the expectation value of an alignment to happen by chance when searching a database of a certain size of sequences. The \mathbf{E} value should be less than to closer to zero for good hits of sequence similarity.

Chapter II : Material and Methods

Figure 06. Depiction of top part from BLAST output sequence alignment run involving alignment search for the query sequence against the library of PDB sequences. Arrows in red, green and blue point to the evaluation terms on the basis of which related sequences of DHFR from different species were selected.
B. BLAST tool outputs a large list of aligned sequence hits from which nine (9) sequences were selected for the study, see Table 01, based on three characteristics:

- The value of sequence similarity with the target sequence ${ }^{[1]}$.
- Sequences being from different species; Mammals (Homo sapiens, Mus musculus), Birds (Gallus gallus), Yeast (Candida albicans), and bacteria (Escherichia coli, Bacillus anthracis, Moritella profunda) ${ }^{[2]}$.
- All of the hit sequences have known 3D-structures ${ }^{[3]}$.

Chapter II : Material and Methods

${ }^{[1]}$ The sequence similarity value on which basis the selection is quite high, not less than 50\% overall similarity (closely related amino-acids conservation) and above 30\% identities (identical amino-acids conservation).
${ }^{\text {[2] }}$ Sequence diversity from the different species is a strategy followed in the study to verify if the structural fold of the DHFR is preserved over the very long evolutionary trajectory between the selected species. This would give high confidence in the final model of the DHFR generated by this procedure.
${ }^{\text {[3] }}$ The 3D-structures representing the sequences that are well sequence aligned with the target DHFR sequence are chosen as starting point for structural prediction for the target sequence.

Chapter II : Material and Methods

Table 01. Selected nine (9) DHFR sequences from the BLAST sequence alignment shown here with their entry codes (first column) representing their access codes in the PDB databank each with the title of the particular study that generated the 3D-structure.

Chapter II : Material and Methods

II.3. Structure templates identification

Detailed of the sequence alignment, evaluation and the amino-acids sequences of the 9 DHFR sequences of the known structures are shown in the Appendix Part II of which three tables are shown below:

Table 02. Hit sequence with PDB structure id: 3K45

Table 03. Hit sequence with PDB structure id: 1U70
Sequence ID: 1U70_A Length: 186 Number of Matches: 1
Range 1: 1 to 186

In all of the alignments above, the Query sequence represents the target DHFR sequence. the Sbjct (subject) represent the sequence that is found to align well with the target sequence.

Identities value represent the percentage of identical (same) residues between the aligned sequences. Positives value represent the percentage of identical + similar (close) residues found between the aligned sequences. Gaps value represent the percentage of introduced

Chapter II : Material and Methods

gaps to achieve the particular sequence alignment. Method, which is Compositional Matrix Adjustment (part of the default parameters of BLAST the details of which are beyond the scope of this project), is the alignment algorithm used by BLAST tool to find the alignment between the sequences. The Score and Expect values are explained earlier in the section above.
C. Multiple alignment confirmation of sequences relatedness:

BLAST also offers the possibility to align multiple sequences (more than two) which is used hear as a mean of confirmation of the well alignment of the sequences selected above. Since the sequences selected in above steps have known 3D-structures, confirmation of a good alignment should show the alignment of the regions of secondary structure in those sequences to the best agreement possible.

It is clearly shown, in Figure 07, where most of the amino acids involved in the secondary structure elements align well for each and every sequence.

Chapter II : Material and Methods

Figure 07. Multiple alignment of the selected sequences with the target sequence in top. Secondary structure is highlighted; α-Helices in yellow color and β strands in green. The multiple alignment shows good agreement of the aminoacids representing secondary structure of the aligned sequences (of the known structures).

For secondary structure definition, the software tool Sequence, Structure \& Function or SSFS (https://bioinformaticstools.org/ssfs/) (Rachedi A, 2011, Goloving A et al., 2005) has been used. See below the section entitled Common Core and Secondary Structure

Elements.

Chapter II : Material and Methods

II.4. Common core calculation:

At this stage, the selected sequences are used to find the invariant and common structural features shared between their 3D-structures. This is does through use use of superposition of the protein structures.

One of the public tools for superposition is the 3D-SS (3Dimensional Structural Superposition) server (K.Sumathi,et al 2005) reachable at the website http://cluster.physics.iisc.ernet.in/3dss/ , see Figure 8.

The superposition of the structures allows to find out the region of similar structural structure and this labeled here as the common core (CC) that is use as the starting point for creating a structural model for the target sequence the subject of this study.

In this study, the 3d-SS STAMP algorithm or Structural Alignment of Multiple Proteins
(R. B. Russell, G. J. Barton, 1992) the cut-off distance of $2 \AA$ (inter-chain) between the C α atoms of the similar regions is used to qualify as suitable final CC . The reason of such a choice for defining structure similarity in this project is based on the fact that $2 \AA$ is much less than the inter-atomic distance between atoms making in protein structure; e.g. average consecutive $\mathrm{C} \alpha$ -to- $\mathrm{C} \alpha$ distance is $3.8 \AA$ and standard deviation of $0.04 \AA$ (Chakraborty S, et al 2013).

Figure 08. The 3D-SS starting page. Usage can click the button Option to proceed.

Chapter II : Material and Methods

II.4.1. Common Core calculation - overall superposition:

Using the 3d-SS tool, the nine (9) selected structures are superposed in an overall fushion. Firstly, the structure with PDB-id " 3 K 45 " is selected as the fixed molecule and the 8 other molecules are superposed one after the other on it. The PDB-ids of the other structure are supplied and the number of structures to superpose (8 non-fixed structures in this study case). To launch the procedure by clicking the button Submit as described in Figures 09 and 10.

Figure 09. 3d-SS option list. The second option for sup as Highlighted.

Chapter II : Material and Methods

The PDB-id 3 K 45 is used as a fixed molecule and the remaining 8 structures are treated as mobile molecules (molecules to be superposed on the fixed molecule). The output of a typical superposition of (1U70, 1DR1, 4H95, 4GH8,1ZDR, 3JW3, 2QK8, 2ZZA).

Alignment of multiple Structures

Fixed Molecules

- PDB Id \qquad O Upload Choisir un fichier Aucun fichier choisi
Rotated Molecules

- PDBId	1470
- PDBId	1dr1
- PDBId	4h95
- PDBId	4gh8
- PDBId	1zdr
- PDBId	3jw3
- PDB Id	2qk8
- PDB Id	2zza

\bigcirc	Upload	Choisir un fichier	Aucu
\bigcirc	Upload	Choisir un fichier	Aucun fichier choisi
\bigcirc	Upload	Choisir un fichier	Aucun fichier choisi
\bigcirc	Upload	Choisir un fichier	Aucun fichier choisi
\bigcirc	Upload	Choisir un fichier	Aucun fichier choisi
\bigcirc	Upload	Choisir un fichier	Aucun fichier choisi
\bigcirc	Upload	Choisir un fichier	Aucun fichier choisi
\bigcirc	Upload	Choisir un fichier	Aucun fichier choisi

Figure 10. List of the fixed molecule and the other rotated molecules selected for superposition.

Chapter II : Material and Methods

Overall-Superposition procedure outcome:

As shown in Figure 11, evaluation scores are shown to qualify the superposition of all the 8 non-fixed structures with the fixed structure 3 K 45 . This table shows the superposition of 9 structures of dihydrofolate reductase .

PDB ID	Chain ID	Superimposes	Sequence identity (\%)	RMSD (A)
3K45	A	[Fixed Molecule]		
1 U 70	A	$\sqrt{ }$	98.92	0.537
1DR1	A	\checkmark	75.54	0.889
4H95	A	\checkmark	40.67	1.295
4GH8	A	$\sqrt{ }$	39.29	1.272
1ZDR	A	\checkmark	36.64	1.118
3JW3	A	\checkmark	38.24	1.276
2QK8	A	\checkmark	37.68	1.412
2ZZA	A	\checkmark	35.56	1.241

Figure 11. superimposition of all selected structures. The standard deviation between the structures (RMSD) which is < $1.5 \AA$ reflect a good quality of structure resemblance as this value is much less than the inter-atomic distance between heavy atoms (all atoms except hydrogen) in each of the involved structures.

The x, y and z coordinates of the superposed structures are then saved into a file and the Molsoft ICM-Browser molecular graphics (Totrov M.M, Abagyan R.A.,1994) system is used to inspect visually the quality of the superposition, see Figure 12.

Chapter II : Material and Methods

Figure 12. The molsoft graphics panel shows the superposition of all the structures in different colors.

For the overall superposition the molecules are chosen for the superposition without any other options which instructs the 3d-SS tool to use its default algorithm to find optimal superposition between the involved structures as shown below in Figure 13.

Figure 13. 3d-SS option list. The molecules are Highlighted in the field.

Chapter II : Material and Methods

The display report for the fixed molecule and the other rotated molecules, with the name and the number of the residues, and the deviation in (\AA) are shown in tables refer to Appendix part III overall superposition part.

II.4.2. Identification of core regions:

At this point, the regions have been designated based on the cut-off distance less than 2 angstrom (i.e $<=2 \AA$). The 3 k 45 was chosen like a fixed molecule and the 8 other molecules are superposed one after the other on it, the results shown in tables: in Appendix part III core identification part.

Figure 14. 3d-SS option list. The molecules are Highlighted in the field with picking residues deviating less than $2 \AA$ as Highlighted.
"RMSD": Root Mean Score Distance (which is a statistical value reflect the quality of data fitting. In this case, RMSD value less than $2 \AA$, means good structural similarity).

$>$ Structural Alignment details between 3K45 and 1U70

In the following table, overall quality of superposition between the two structures, i.e. the RMSD value of $0.537 \AA$ ($<2 \AA$) indicates a very good quality of the fold configuration similarity between the two structures subject to this study, see Table 04.

Table 04. Structural Alignment details between 3K45 and 1U70

Fixed Molecule	Rotated Molecule	RMSD (\AA)	Alignment Length
3K45	1U70	$\mathbf{0 . 5 3 7}$	$\mathbf{1 8 6}$

Details of the quality of superposition between these two structures (3K45 and 1U70) as shown in Table 09, refer to appendix. all the local deviation between CA atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures.

Chapter II : Material and Methods

$>$ Structural Alignment details between 3K45 and 1DR1

In the following table, overall quality of superposition between the two structures, i.e. the RMSD value of $0.889 \AA(<2 \AA)$ indicates a very good quality of the fold configuration similarity between the two structures subject to this study, see Table 05 .

Table 05. Structural Alignment details between 3K45 and 1DR1

Fixed Molecule	Rotated Molecule	RMSD (\AA)	Alignment Length
3K45	1DR1	$\mathbf{0 . 8 8 9}$	$\mathbf{1 8 6}$

Details of the quality of superposition between these two structures (3K45 and 1DR1) as shown in Table 10, refer to appendix. all the local deviation between $\mathrm{C} \alpha$ atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures.

> Structural Alignment details between 3K45 and 4H95

In the following table, overall quality of superposition between the two structures, i.e. the RMSD value of $1.295 \AA(<2 \AA)$ indicates a very good quality of the fold configuration similarity between the two structures subject to this study, see Table 06 .

Table 06. Structural Alignment details between 3K45 and 4H95.

Fixed Molecule	Rotated Molecule	RMSD (A)	Alignment Length
3K45	4H95	$\mathbf{1 . 2 9 5}$	198

Details of the quality of superposition between these two structures (3K45 and 4H95) as shown in Table 11, refer to appendix. all the local deviation between CA atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures.

Chapter II : Material and Methods

> Structural Alignment details between 3K45 and 4GH8

In the following table, overall quality of superposition between the two structures, i.e. the RMSD value of $1.262 \AA(<2 \AA)$ indicates a very good quality of the fold configuration similarity between the two structures subject to this study, see Table 07 .

Table 07. Structural Alignment details between 3K45 and 4GH8.

Fixed Molecule	Rotated Molecule	RMSD (\AA)	Alignment Length
3K45	4GH8	$\mathbf{1 . 2 6 2}$	187

Details of the quality of superposition between these two structures (3 K 45 and 4GH8) as shown in Table 12, refer to appendix. all the local deviation between CA atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures.

$>$ Structural Alignment details between 3K45 and 1ZDR

In the following table, overall quality of superposition between the two structures, i.e. the RMSD value of $1.118 \AA(<2 \AA)$ indicates a very good quality of the fold configuration similarity between the two structures subject to this study, see Table 08 .

Table 08. Structural Alignment details between 3K45 and 1ZDR.

Fixed Molecule	Rotated Molecule	RMSD (\AA)	Alignment Length
3K45	1ZDR	$\mathbf{1 . 1 1 8}$	$\mathbf{1 8 5}$

Details of the quality of superposition between these two structures (3 K 45 and 1ZDR) as shown in Table 13, refer to appendix. all the local deviation between CA atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures.

> Structural Alignment details between 3K45 and 3JW3

In the following table, overall quality of superposition between the two structures, i.e. the RMSD value of $1.276 \AA(<2 \AA)$ indicates a very good quality of the fold configuration similarity between the two structures subject to this study, see Table 09 .

Table 09. Structural Alignment details between 3K45 and 3JW3.

Fixed Molecule	Rotated Molecule	RMSD (\AA)	Alignment Length
3K45	3JW3	$\mathbf{1 . 2 7 6}$	191

Chapter II : Material and Methods

Details of the quality of superposition between these two structures (3K45 and 3JW3) as shown in Table 14, refer to appendix. all the local deviation between CA atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures.

> Structural Alignment details between 3K45 and 2QK8

In the following table, overall quality of superposition between the two structures, i.e. the RMSD value of $1.412 \AA(<2 \AA)$ indicates a very good quality of the fold configuration similarity between the two structures subject to this study, see Table 10.

Table 10. Structural Alignment details between 3K45 and 2QK8.

Fixed Molecule	Rotated Molecule	RMSD ($\AA)$	Alignment Length
3K45	2QK8	1.412	189

Details of the quality of superposition between these two structures (3K45 and 2QK8) as shown in Table 15, refer to appendix. all the local deviation between CA atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures.

> Structural Alignment details between 3K45 and 2ZZA

In the following table, overall quality of superposition between the two structures, i.e. the RMSD value of $1.241 \AA(<1 \AA)$ indicates a very good quality of the fold configuration similarity between the two structures subject to this study, see Table 11.

Table 11. Structural Alignment details between 3K45 and 2ZZA.

Fixed Molecule	Rotated Molecule	RMSD (Å)	Alignment Length
3K45	2ZZA	$\mathbf{1 . 2 4 1}$	$\mathbf{1 8 9}$

Details of the quality of superposition between these two structures (3 K 45 and 2ZZA) as shown in Table 16, refer to appendix. all the local deviation between CA atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures.

The details provided in the tables allowed for defining the the shared common structure regions (call here Common Core or CC) by keeping all regions where intra-chain $\mathrm{C} \alpha-\mathrm{C} \alpha$ distance is $<=$

Chapter II : Material and Methods

$2 \AA$ and discarding the rest. The CC is composed of 10 regions presenved in structure throughout all of the 9 initial structures, see Figure 15 and Table 12.

Figure 15. The molsoft graphics panel shows the superposition of all the structures in different colors after keepeing on the Common Core made of 10 regions.

Chapter II : Material and Methods

Table 12. The 10 regions/segments common core in each structure with represented by their PDB ids.

PDBid Region	3K45	1U70	1DR1	4H95	4GH8	1ZDR	3JW3	2QK8	2ZZA
R-N ${ }^{\circ} 1$	$4 \rightarrow 12$	$4 \rightarrow 12$	$4 \rightarrow 12$	$6 \rightarrow 14$	$2 \rightarrow 10$	$2 \rightarrow 10$	$3 \rightarrow 11$	$3 \rightarrow 11$	$3 \rightarrow 11$
R-N ${ }^{\circ} 2$	$14 \rightarrow 22$	$14 \rightarrow 22$	$14 \rightarrow 22$	$17 \rightarrow 25$	$12 \rightarrow 20$	$12 \rightarrow 20$	$13 \rightarrow 21$	$13 \rightarrow 21$	$13 \rightarrow 21$
R-N ${ }^{3} 3$	$26 \rightarrow 38$	$26 \rightarrow 38$	$26 \rightarrow 38$	$28 \rightarrow 40$	$24 \rightarrow 36$	$23 \rightarrow 35$	$24 \rightarrow 36$	$24 \rightarrow 36$	$24 \rightarrow 36$
R-N ${ }^{\circ} 4$	$48 \rightarrow 60$	$48 \rightarrow 60$	$48 \rightarrow 60$	$50 \rightarrow 62$	$39 \rightarrow 51$	$38 \rightarrow 50$	$39 \rightarrow 51$	$39 \rightarrow 51$	$39 \rightarrow 51$
R-N ${ }^{\circ} 5$	$66 \rightarrow 77$	$66 \rightarrow 77$	$66 \rightarrow 77$	$68 \rightarrow 79$	$57 \rightarrow 68$	$53 \rightarrow 64$	$54 \rightarrow 65$	$54 \rightarrow 65$	$54 \rightarrow 65$
R-N ${ }^{\circ} 6$	$88 \rightarrow 91$	$88 \rightarrow 91$	$88 \rightarrow 91$	$91 \rightarrow 94$	$77 \rightarrow 80$	$75 \rightarrow 77$	$75 \rightarrow 78$	$75 \rightarrow 78$	$75 \rightarrow 78$
R-N ${ }^{\circ} 7$	$112 \rightarrow 125$	$112 \rightarrow 125$	$112 \rightarrow 125$	$109 \rightarrow 122$	$95 \rightarrow 108$	$93 \rightarrow 106$	$93 \rightarrow 106$	$93 \rightarrow 106$	$93 \rightarrow 106$
R-N ${ }^{\circ} 8$	$131 \rightarrow 138$	$131 \rightarrow 138$	$131 \rightarrow 138$	$128 \rightarrow 135$	$112 \rightarrow 119$	$110 \rightarrow 117$	$110 \rightarrow 117$	$110 \rightarrow 117$	$110 \rightarrow 117$
R-N ${ }^{\circ} 9$	$145 \rightarrow 149$	$145 \rightarrow 149$	$145 \rightarrow 149$	$146 \rightarrow 150$	$126 \rightarrow 130$	$124 \rightarrow 128$	$124 \rightarrow 128$	$124 \rightarrow 128$	$124 \rightarrow 128$
R-N ${ }^{\circ} 10$	$175 \rightarrow 184$	$175 \rightarrow 184$	$175 \rightarrow 184$	$182 \rightarrow 191$	$153 \rightarrow 162$	$151 \rightarrow 160$	$151 \rightarrow 160$	$151 \rightarrow 160$	$151 \rightarrow 160$

Chapter II : Material and Methods

II.4.3. Region guided superposition and Common Core enhancement:

In this step the superposition has been undertaken using more options provided by the 3d-SS in which case, regions for the superposition procedure were introduced.

For every pairwise superposition, the structure 3 K 45 is also used as a fixed molecule and the other as a rotated molecule. The case below of the 1U70, the superposition guided by the CC regions is shown in Figures16.a to c:

Figure 16.a. 3d-SS option list. Highlighted PDB ids are to superposed.

Chapter II : Material and Methods

Fixed Molecule
3K45

This is a X-RAY DIFFRACTION Structure
Entire file
V Select Chains

Rotated Molecule 1

1 U70

This is a X-RAY DIFFRACTION Structure
\square Entire file
V Select Chains

\longrightarrow Go Clear
Figure 16.b. 3d-SS option list. Highlighted are the number of regions (10) to be used in the superposition.

Then Corresponding 10 regions from each structure regions are supplied in the 3d-SS option 'Zone ranges', which simply means supply the structures' regions to be used in the superposition, see Figure 16.c.

Chapter II : Material and Methods

Fixed Molecule
3K45
Enter the Zone ranges

Rotated Molecule 1
1U70
Enter the Zone ranges

Figure 16.c. 3d-SS option 'Zone ranges'. Starting and Ending residues represent the numbers defining the corresponding regions between the structures to be superposed.

Chapter II : Material and Methods

Regions Guided Superposition outcome:

Same method and details are followed with superposing the rest of the PDB structures. All the other structures. As shown in Figure 17, evaluation scores are shown to qualify the superposition of all the 8 non-fixed structures with the fixed structure 3 K 45 (the $9^{\text {th }}$ structure). The RMSD values clearly show important an improvement in superposition compared to the overall superposition applied earlier seen in Figure 11.

PDB ID	Chain ID	Superimposes	Sequence identity \%)	RMSD (A $^{\text {) }}$
3K45	A	[Fixed Molecule]	100.00	-
1 U 70	A	$\sqrt{ }$	98.94	0.464
1DR1	A	$\sqrt{ }$	84.04	0.710
4H95	A	$\sqrt{ }$	48.94	0.719
4GH8	A	$\sqrt{ }$	43.62	0.726
1ZDR	A	$\sqrt{ }$	41.94	0.724
3JW3	A	$\sqrt{ }$	42.55	0.744
2QK8	A	$\sqrt{ }$	42.55	0.832
2ZZA	A	$\sqrt{ }$	41.49	0.731

Figure 17. Superposition of the 9 dihydrofolate reductase structures after the input of the CC region. RMSD values show even better agreement compare to overall superposition (seen in Figure 11).

The RSMD values shown in Figure 17 reflect quite a good structural common core of 97 residues along which the 9 structures match within less than $1 \AA$ from each other in structural space, though many of them belong to different species, as illustrated in Figure 18. The details of the inter-atomic distance of all superpositions are shown in Tables found in the Appendix part III under the section "Common Core calculation".

Chapter II : Material and Methods

Figure 18. The molsoft graphics panel shows the superposition of all the shared common core structures each in a different color. The RMSD values reflect a quite high quality core region shared between the structure.

Common Core and its Relation to the Secondary Structure Elements:

The secondary structure elements in all of the 9 structures have been identified using the Sequence, Structure \& Function server of SSFS tool (Rachedi A, 2011, Gloving A et al., 2005), https://www.bioinformaticstools.org/ssfs/ , refer to the SSFS section in the Appendix.

As mentioned above, the Common Core is made of 10 segments many of which encompose secondary structure elements but not all. Some CC regions longer or shorter than secondary structures elements and others are part of loop regions, see Figures 19 and 20 which are included below for vertebrate DHFR (PDB id 1U70) and bacterial one (PDB id 1ZDR).

Chapter II : Material and Methods

Figure 19. Structure based alignment of the query (target) sequence with the vertebrate sequence (PDB id: 1U70). Alignment shows the correlation of CC regions with the secondary structure; Most of secondary elements, α-helices and β-sheet are contained in the CC regions, however there are CC regions that represent loop regions, like regions 12-22 and 145-149 and some secondary structure, like the α-helix 92-107 and β-strand 157-158 regions are not part of the CC .

Chapter II : Material and Methods

Figure 20. Structure based alignment of the query (target) sequence with the bacterial sequence (PDB id: 1ZDR). Alignment shows the correlation of CC regions with the secondary structure; Most of secondary elements, α-helices and β-sheet are contained in the CC regions, however there are CC regions that represent loop regions, like regions 12-20 and 124-128 and some secondary structure, like the α-helix $78-88$ and β-strand 157-158 region is not part of the CC.

Chapter II : Material and Methods

Model template and amino-acids sequence of the model:

In general methodology, any of the core regions from the 9 structures used in the calculation can be use a template for the model structure sought for the DHFR query sequence.

In this project two models are generated one based on the core regions from the vertebrate DHFR. the mouse Mus musculus, represented by the PDB structure 1U70 and the second based on the core regions from the bacterial DHFR, the bacteria Geobacillus stearothermophilus, represented by the structure 1ZDR, refer to Table 1.

As seen in Figures 19 and 20, the template from vertebrate and bacterial DHFR structures is almost same in its main conformational structure, but differ at the level of amino-acids sequence, marked as underlined amino acids.

1. Amino-acids sequence representing the model in the core region, from 1U70, are thus the segments (highlighted in red in the Figures 19). The amino-acids sequence (Seq_1) to be modeled is shown next in Figure 21.
```
LNCIVAVSQ - MGIGKNGDL - PLRNEFRYFQRMT - NLVIMGKKTWFSI - PLKGRINLVLSR -
FLSR - VWIVGGSSVYKEAM - LKLFVTRI - DTFFP - IKYKFEVYEK
```

Figure 21. Amino-acids sequence, Seq_1, for the query sequence representing the core region. The red highlighted are the amino-acids in the query sequence that different from the corresponding sequence of the core region in the template structure 1U70.

Highlighted in red are the amino-acids in the query sequence that different from the corresponding sequence of the core region in the template structure 1 U 70 and which are:

$$
\underline{\underline{4-12}}, \underline{\underline{14-22}}, \underline{\underline{26-38}}, \underline{\underline{48-60}}, \underline{\underline{66-77}}, \underline{\underline{88-91}}, \underline{\underline{112-125}}, \underline{\underline{131-138}}, \underline{\underline{145-149}, \underline{175-}-\underline{l}-1}
$$ $\underline{\underline{184}}$

(see Table 12 and also Figures 19)

Chapter II : Material and Methods

2. Amino-acids sequence representing the model in the core region, from $1 Z \mathrm{ZDR}$, are the segments (highlighted in red in the Figures 20). The amino-acids sequence (Seq_2) to be modeled is shown next in Figure 22.

LNCIVAVSQ - MGIGKNGDL - PLRNEFRYFQRMT - NLVIMGKKTWFSI - PLKGRINLVLSR FLSR - VWIVGGSSVYKEAM - LKLFVTRI - DTFFP - IKYKFEVYEK

Figure 22. Amino-acids sequence, Seq_2, for the query sequence representing the core region. The red highlighted are the amino-acids in the query sequence that different from the corresponding sequence of the core region in the template structure 1ZDR.

Highlighted in red are the amino-acids in the query sequence that different from the correspoding sequence of the core region in the template structure 1 u 70 and which are: $\underline{\underline{2-10}}, \underline{\underline{12-20}}, \underline{\underline{23-35}}, \underline{\underline{38-50}}, \underline{\underline{53-64}}, \underline{\underline{75-77}}, \underline{\underline{93-106}}, \underline{\underline{110-117}, \underline{124-128}, \underline{\underline{151}}-}$ $\underline{\underline{160}}$
(see Table 12 and also Figures 20)

II.5. Amino-acids side-chains building:

To build the side-chains of the amino-acids that differ between the query sequence and the sequence of both core regions of 1 U 70 and 1ZDR outlined in the section above and Figures $21 \& 22$, the molecular modelling tool Auto Protein Homology Modeling or APHM (Rachedi, A. 1994) have been implimented. More information about the APHM and access link are descrbed in the next Chapter III.

Model creation for the Seq_1 and Seq_2:

The APHM precedure need to be supplied with the PDB id of the template structure like 1U70, the core region data and the core sequence Seq_1 build the model and the different aminoacids as outline in Figures 23-25.

Chapter II : Material and Methods

Figure 23. APHM interface with input data of 1 structure template 1U70, 2 core regions and 3 Seq_1 amino-acids sequence. To builf the side-chain and model, the user need to click button Submit encircled in red 4.

Chapter II : Material and Methods

Figure 24. APHM after execution, if succefull as outlined in red rectangle, it provides a button for visualzing the created molecule, the button outlined in white rectangle which requires clicking to proceed to the APHM 3D-structure viewer.

Chapter II : Material and Methods

Figure 25. The APHM 3D-viewer displaying the Model created based Seq_1 and core regions suitable to the template structure 1U70.

Chapter II : Material and Methods

Building the model using the core template 1DZR, follows the same procedure except that the structure template sould be the PDB id 1DZR and the related core regions mentioned above, see Figures 26 and 27.
a bioinformatics.univ-saida.dz/bit2/?arg=APHM\&tt1=Auto\ Homology\ Molecular\ Modeling is is (1) \&)

```
Auto Protein Itomology Modeling - APIMM (Chtrion Rod)
Job Name: 
Submit
* required field
Modeling title: Creation of Human DHFR Homology Model
Executing APHM modeling
Modelling Finished successfull .
Click button to Visualize the model
MPHMT MSc project: Molecular Modeling and Prediction of Protein 3D-structure, Principals and Applications,
Ouafaa Bahloul, June 2022,
implimentation: Department of Biology, Faculty of Sciences,
    University of Saida, Algeria
- Citation Ref. Rachedi, A. (1994) Three-dimensional structural studies on dihydrofolate reductase, Chapter 8, Ph.D Thesis,
    University of Leed, UK.
    Availabe from
    https://lecds,primo,exlibrisgroup_com/permalink/44LEE INST/5rdl/9/alma991006873019705181
```

Figure 26. APHM after execution with the bacterial template structure 1ZDR and template regions (core regions) highlighted in red. Outlined in yellow show model building.

Chapter II : Material and Methods

@ bioinformatics.univ-saida.dz/bit2/?arg=APHM\&tt1=Auto\ Homology\ Molecular\ Modeling
เ म ~

Figure 27. The APHM 3D-viewer displaying the Mode created based Seq_2 and core regions suitable to the template structure 1ZDR.

It should be noted that both models are the same in their conformational structure, however sabtle differences exist and are explained in the next Chapter III Results and Discussion.

II.6. Loop regions building:

As seen above, the calculated model is composed mainly made of commom coreoregions which mean linking regions known as loop regions and may be even some secondary structure elemnts or parts of.

However due to time and resources limitation, this step is left out. This is also based on the established knowledge in structural and functional biology, that the common core region would help the essecial of biological function of proteins.

Chapter II : Material and Methods

II.7. Final model:

The final model in this project is predicted for the query sequence based on the common structural core preserved in 9 structures despite that different species and evoluationay history.

The schematic below, Figure 28, summarises the procedure followed into achieving the final model executed manually for academic and teaching purposes being the goals behind this project.

Figure 28. A schematic diagram of all the steps of homology modeling procedure implimented to reach the final model.

Discussion of the evaluation and application of such 3D-structure prediction is dealt with in the next Chapter III Results and Discussion.

Chapter III: Results \& Discussion

Chapter III : Results and Discussion

I. Presentation of the results

I.1. Structure similarity identification

The process of molecular modelling investigation towards structure prediction for protein sequences necessitate the identification of known protein structures the sequences of which share similarity with to the query sequence. In this project a given human Dihydrofolate reductase sequence has been selected and similarity has been discovered using BLAST alignment search against a library of sequences from known structures (PDB sequence library) each with a PDB id as shown in Figure 1; refer to Table 1 and Figure 3 in Chapter II for more details.

Figure 01. Depiction from BLAST output sequence alignment run involving alignment search for the query sequence against the library of the nine chosen PDB sequences.

Chapter III : Results and Discussion

I.2. Definition of the types of structures selected from BLAST results:

The selected structures are from different species some show even lower sequence identity with the query sequence as low as 30%. This choice has been taken to test the theory that a particular biological function would be preserved over evolutionary history via the preservation of a particular structural configuration among other properties (Rives A et al., 2021).

The species of the sequences of the similar structures and function are briefly described along with sequence similarity in the following:

\checkmark Mammals

Mus Musculus:

The house mouse, it has been domesticated as a pet, as well as an important laboratory mouse, and it is one of the most significant model animals in biology and medicine, It has characteristics like a pointed nose, wide rounded ears, and a long, almost hairless tail.

Similarity percentage to the query sequence: over 89\%

Structure in PDB identification codes:

- 3 K 45 chain A, denoted in Figure 01 as 3K45_A (Gangjee A et al., 2009).

Details found here https://bioinformaticstools.org/ssfs/ssfs.php?qry=3k45

- 1U70 chain A. denoted in Figure 01 as 1U70_A (Cody V et al., 2005).

Details available here https://bioinformaticstools.org/ssfs/ssfs.php?qry=1u70

\checkmark Birds

Gallus Gallus:

The red jungle fowl is a tropical bird, distinguished by its red color and lives in Southeast Asia. It is the species from which the chicken evolved.

Similarity percentage to the query sequence: over 75%

Structure in PDB identification code:

- 1DR1 chain A, denoted in Figure 01 as 1DR1_A (McTigue M-A et al., (1992).

Details found here https://bioinformaticstools.org/ssfs/ssfs.php?qry=1dr1

Chapter III : Results and Discussion

\checkmark Yeast - (microbe)

Candida albicans:

Is an opportunistic pathogenic yeast that is found in the human gut flora.

Structure in PDB identification code:

- 4H95 chain A, denoted in Figure 01 as 4H95_A (DeJarnette C et al., 2020)

Details found here https://bioinformaticstools.org/ssfs/ssfs.php?qry=4h95
Similarity percentage to the query sequence: over 35%

\checkmark Bacteria (Microbe)

* Escherichia coli: Bacteria are found mainly in the intestines of healthy humans and animals.

Structure in PDB identification code:

- 4GH8 chain A, denoted in Figure 01 as 4GH8_A (Srinivasan B et al., 2019)

Details found here https://bioinformaticstools.org/ssfs/ssfs.php?qry=4gh8

* Bacillus species: These are Gram-positive bacteria, and causative agents of a number of diseases such as anthrax (a common disease of livestock and sometimes humans).

Structure in PDB identification code:

- 3JW3 chain A, denoted in Figure 01 as 3JW3_A (Beierlein J-M et al., 2010).

Details found here https://bioinformaticstools.org/ssfs/ssfs.php?qry=3jw3

* Moritella profunda: from the Moritellaceae family these are marine bacteria. Most species grow at relatively low temperatures.

Structure in PDB identification code:

- 2ZZA chain A, denoted in Figure 01 as 2ZZA_A (Penhallurick R-W \& Ichiye T., 2021)

Details found here https://bioinformaticstools.org/ssfs/ssfs.php?qry=2zza
Similarity percentage to the query sequence: over 30\%

Chapter III : Results and Discussion

I.3. Model template

The final model template can be calculated from vertebrate or bacterial based common core and in both cases it is composed of 10 regions.

* From vertebrate: represented here by the PDB id $\mathbf{1 U 7 0}$ of the mouse DHFR:

As previously mentioned, in the second chapter, the sequence difference in the core region as compared to the query sequence does not contain many amino-acids different from the query sequence, Figure 2.

```
LNCIVAVSQ | MGIGKNGDR | PLRNEFKYFQRMT | NLVIMGRKTWFSI | PLKDRINIVLSR
4\longrightarrow12| 14\longrightarrow22| 26\longrightarrow }\longrightarrow38|48\longrightarrow7
| FLAK | VWIVGGSSVYQEAM | LRLFVTRI| DTFFP | IKYKFEVYEK
| 88->91| 112\longrightarrow125| 131\longrightarrow138 |145->149| 175\longrightarrow184
```

Figure 02. Amino-acids sequence from the Mus musculus, representing the core regions used in the model template.

* From bacteria: represented in the project by the 1ZDR. Building a model based on template from microbes requires modelling the side chains of a large number of amino-acids that are different from the query sequence, Figure 3.

```
ISHIVAMDE | RVIGKDNRL| HLPADLAYFKRVT | HAIVMGRKTFEAI| PLPGRDNVVVTG
2\longrightarrow10| 12\longrightarrow20| 23\longrightarrow }\longrightarrow\mathrm{ C 35| 38 }
| LVLH | VFIIGGAELFRATM |DRLYVTKI| DTFYP | YEHAFIIYER
|75->77| 93\longrightarrow106|110->117| 124->128 | 154\longrightarrow 160
```

Figure 03. Amino-acids sequence from the Geobacillus stearothermophilus, representing the core regions used in the model template.

Chapter III : Results and Discussion

I.4. Final model and completeness:

- Template has been completed as seen in chapter II by building side chains, Because the uniqueness of a protein structure is primarily defined by its side-chain packing conformation, side-chain modeling is crucial for protein structure prediction. which mainly contains the following secondary structures (seven β-sheet and 3α-helices) see Figure 4.
- The final model in this project lacks the loop regions that were not possible to do due to the shortness for time and resources.
- Even that model lacks some non-conserved regions, it contains important regions for biological function and ligands binding site residues. Refer below to
II. 4 Catalytic Residues Preservation for further details.

Figure 04. The APHM 3D-viewer displaying the Model created based Sequence and core regions suitable to the template structure 1U70.

Chapter III : Results and Discussion

II. Modelling quality assessment and validity

The evaluating terms for assessing the quality and reliability of the final models are many, important ones are described in the following:

II.1. RMSD overall superposition:

In overall superposition, the RMSD values, as in Table 1 , are all less than $1.5 \AA$, reflecting a good superposition fit for modelling and acceptable quality of structure resemblance since the RMSD value is much less than the inter-atomic distance between heavy atoms (all atoms except hydrogen) in each of the involved structures.

Table 01. RMSD values in overall superposition

PDB ID	1U70	1DR1	4H95	4GH8	1ZDR	3JW3	2QK8	2ZZA
RMSD (A)	0,537	0,889	1,295	1,272	1,118	1,276	1,412	1,241

II.2. RMSD core based superposition:

This RMSD are less than $1 \AA$ that reflect a very high quality for structural modeling since this distance is comparable to inter atomic distances seen in good proteins structures. Note that the value of RMSD decreased significantly compared to the value of the overalls, after choosing the similar and identical regions between the structures.

Table 02. RMSD directed per region values

PDB ID	1U70	1DR1	4H95	4GH8	1ZDR	3JW3	2QK8	2ZZA
RMSD (A)	0.464	0.710	0.719	0.726	0.724	0.744	0.832	0.731

Chapter III : Results and Discussion

II.3. Common core and secondary structure

As graphically shown above, Figure 4, the common core contains most of the secondary structures though an element or two are missing suggesting that their role in enzymatic function is in direct.

The number of secondary structures present in the common core are all between six and seven β-stands forming a single central β-sheet and between three and four α-helices in all nine selected structures see Figure 5 and Figure 6.

Figure 05. Structure based alignment of the query (target) sequence with the bacterial sequence (PDB id: 2ZZA). Alignment shows the correlation of CC regions with the secondary structure; Most of the secondary elements, four α-helices and six β-sheet are contained in the CC regions as highlighted.

Chapter III : Results and Discussion

Figure 06. Structure based sequence alignment of the query sequence with the vertebrate sequence (PDB id: 1DR1). Alignment shows the correlation of CC regions with the secondary structure; Most of the secondary elements, three α-helices and seven β-sheet are contained in the CC regions as highlighted.

It's here noted that sequences alignments of the query sequence with the PDB ids 1DR1 and 2ZZA from avian and bacterial sources respectively are used above. This is in contrast with mouse 1U70 and bacterial 1ZDR, described in Chapter II in Figures 19 and 20, to further show that the model template is the same in all these cases as a further demonstration for the notion of structure/function relationship conservation across the species.

Chapter III : Results and Discussion

II.4. Catalytic Residues Preservation:

Based on the ligand binding environment of human DHFR in the structures PDB-id 1DHF (Davies, J-F et al., 1990) and PDB-id 1U72 (Cody Vet al., 2005) calculate using the SSFS tool (Rachedi A, 2011 et al., 2005), the residues compose catalytic sites for the ligands Folate (substrate) and NADPH (cofactor) are the following:

- Folate binding residues: Glutamate E-30 and Arginine R-70 highlighted as underlined green coloured amino-acids in Figure-7. Refer to online table accessed from:
https://bioinformaticstools.org/ssfs/sitects.php?fl=1dhf 3643912495\&ht=FOL:A187
For details on the 1DHF structure refer to:
https://bioinformaticstools.org/ssfs/ssfs.php?qry=1dhf\&stp=smr
- NADPH binding residues: Alanine A-9, Isoleucine I-16, Lysines K-54 \& K-55, Threonine T-56, Serines S-59 \& S-76, Arginine R-77 and Valine V-120 highlighted as underlined red coloured amino-acids in Figure-7. Refer to online table accessed from:
https://bioinformaticstools.org/ssfs/sitects.php?fl=1u72_6413100842\&ht=NDP:A187
- For details on the 1U70 structure refer to:
https://bioinformaticstools.org/ssfs/ssfs.php?qry=1u72\&stp=smr

```
LNCIV\underline{AVSQ| MGI!GKNGDL_| PLRNEEFKYFQRMT | NLVIMGKKTWFSI| PLKDRINIVLSR}
```



```
|FLAK | VWIVGGSSYYQEAM|LRLFVTRI| DTFFP |IKYKFEVYEK
| 88->91| 112\longrightarrow 
```

Figure 07. Amino-acids sequence representing the core regions of human DHFR. Substrate and cofactor binding residues preserved in the final predicted model.

Chapter III : Results and Discussion

As is clearly shown in Figure 7, all of the binding site residues for the substrate and cofactor are preserved in the core region of the created model of DHFR. This is a clear indication for the reliability of the modeling procedure implemented in this project. Such a homology based model can thus be quite instrumental in carrying important structural and functional studies on the effects of mutations on the activity of enzymes as also summarized in general conclusion below,

III. Choice of model building template

As per the methodology described in Chapter II the final model can be built from two common sources vertebrates and bacterial.

The most basic template selection rule is to choose the structure that has the greatest sequence similarity to the modelled sequence, availability and the quality of template.

In addition, the chosen sequence must be looked at, this study was done for a human dihydrofolate reductase sequence, which favours using the closest type which in this case would be the vertebrate template though it should not matter much if the bacterial template is use.

IV. Bioinformatics tools development

For the purpose of demonstrating the manual homology molecular procedure followed in this project, an online tool was created representing an implementation of the molecular modelling tool Auto Protein Homology Modeling or APHM (Rachedi, A. 1994) towards executing amino-acids side-chain atoms and graphical visualization of the predicted model and its structural details.

APHM \& Molecular Graphic Viewer implementation is found on the Bioinformatics Server at the University of Saida, and is accessible online at the web-address:

https://bioinformatics.univ-saida.dz/bit2/?arg=APHM

See Figure 4 and for examples on how to use the implementation of APHM refer section "II.5. Amino-acids side-chains building:" and Figures 23 to 26 in Chapter II.

The APHM implementation, besides the visualization, offers also the ability to download the actual xyz coordinates of the final model to examine and/or visualize using other molecular graphic tools, see Figure 8.

Chapter III : Results and Discussion

Figure 08. APHM interface page. An example showing model building successful execution that provide button for model structure visualization, white encircled, and button for downloading xyz coordinates, encircled in red.

General conclusion

This project with the results obtained in it has demonstrated a number of important biology function related principals:

- The particular function like doing or mediating the action of reducing Dihydrofolate to Tetrahydrofolate, necessary for cellular division is preserved, throughout even thousand millions of evolutionary history. by a well defined three-dimensional architecture or arrangement of secondary structure elements and other elements not part of the secondary structure (as seen above.
- The modelling procedure requires side-chain building of dissimilar amino acids found between the query sequence and sequence of model templates. This mean that models created by homology modelling, amongst many things, can be used to predict the effects of mutations and their possible effect on the biological function of proteins.
- The results above showed that preserved common core between evolutionary diverted proteins, from different species, would contain regions that are not part of secondary structures which indicate that biological function is not necessarily associated with the secondary structure. This would call scientist to broaden the scope of their investigation for better understanding of the roots behind the rise of the biological function.
- Such work of creating homology based models can thus be used for rational design of new drugs that can be tested (used) against cancer disease and bacterial infections through the analysis of catalytic and ligand binding residues preserved on the common core in the final model.

Appendix part I

1) Structure of the 20 ammino acids

NON-POLAR					+ CHARCE
 Glycine (Gly/G)	 Alanine (Ala/A)	 Valine (Val/V)	 Cysteine (Cys/C)	 Proline (Pro/P)	
 Leucine (Leu/L)	 Isoleucine ($\mathrm{He} / \mathrm{II}$)	 Methionine (Met/M)	 Tryptophan (Trp/W)	 Phenylalanine (Phe/F)	
		POLAR			- CHARGE
Serine (Ser/S)	Threonine (Thr/T)	Tyrosine (Ty/ / Y)	Asparagine (Asn/N)	Glutamine (GIn/Q)	Aspartic Acid Glutamic Acid (Asp /D) (Gu/E)

The 20 amino acids that serve as the building blocks for proteins. These amino acids (shown with their respective three-letter abbreviations) can be divided into nonpolar, polar, and electrically charged groups. (Cornell, B. 2016. Amino Acids. Bio ninja).

Appendix part I

2) The amino acid codes supported (22 amino acids and 3 special codes) are:

Amino Acid Code	Meaning
A	Alanine
B	Aspartic acid (D) or Asparagine (N)
C	Cysteine
D	Aspartic acid
E	Glutamic acid
F	Phenylalanine
G	Glycine
H	Histidine
I	Isoleucine
J	Leucine (L) or Isoleucine (I)
K	Lysine
L	Leucine
M	Methionine/Start codon
N	Asparagine
0	Pyrrolysine (rare)
P	Proline
Q	Glutamine
R	Arginine
S	Serine
T	Threonine
U	Selenocysteine (rare)
V	Valine
W	Tryptophan
Y	Tyrosine
Z	Glutamic acid (E) or Glutamine (Q)
X	any
*	translation stop
-	gap of indeterminate length

Sequences represented in the standard IUPAC amino acid codes; a single hyphen or dash can be used to represent a gap character "derived from IUPAC code table". NIAS DNA Bank. Archived from the original on 2011-08-11".

Appendix part II

Table 01. Hit sequence with PDB structure id: 3 K 45

Table 02. Hit sequence with PDB structure id: 1U70

Appendix part II

Table 03. Hit sequence with PDB structure id: 1DR1

Table 04. Hit sequence with PDB structure id: 4H95

Sequence ID: 4H95 A Length: 189 Number of Matches: 1			
Range 1: 6 to 146			
Score	Expect Method Identities	Positives Gaps	Gaps
92.0 bits(227)) $4 \mathrm{e}-23$ Compositional matrix adjust. 52/147(35\%)	81/147(55\%) 10/1	10/147(6\%)
Query 7	CIVAVSONMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWFSIPEKNR$+A_{+}+$GIG $G+P W$ LR RYF + TT $++\quad+N$ VIMG + KTW SIP + R R		NR 66
Sbjct	IVAALKPALGIGYKGKMPWR-LRKEIRYFKDVTTRTTKPNTRNAVIMGRKTWESIPQKFR		FR 64
Query 67	PLKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAM		AM 126
	PL R+N++LSR + + ++ $\mathrm{A}+\mathrm{L}+\mathrm{V}$	$+\mathrm{V}+\mathrm{I}+\mathrm{GG}+$ +Y E +	
Sbjct 65	PLPDRLNIILSRSYEN-----EIIDDNIIHASSIESSLNLVSDV	ERVFIIGGAEIYNELI	LI 119
Query 127	NHPGHLKLFVTRIM----QDFESDTFF 149		
	$\mathrm{N}_{+} \mathrm{L}+\mathrm{T} \mathrm{I}+\mathrm{EDTF}$		
Sbjct 120	NNSLVSHLLITEIEHPSPESIEMDTFL 146		

Appendix part II

Table 05. Hit sequence with PDB structure id: 4GH8

Sequence ID: 4GH8_A Length: 162 Number of Matches: 1 Range 1: 2 to 162					
$\begin{aligned} & \hline \text { Score } \\ & 85.9 \text { bits(211) } \\ & \hline \end{aligned}$	Expect Method Identities $5 e-21$ Compositional matrix adjust. $57 / 184(31 \%)$	$\begin{array}{ll\|} \hline \text { Positives } & \text { Gaps } \\ 95 / 184(51 \%) & 26 / 184(14 \%) \\ \hline \end{array}$			
Query 5 L	LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWFSIPEK ++ I A++ + IG +PWPPL + +F+R T V IMG+ TW SIPEK ISLIAALAVDRVIGMENAMPWPPLPADLAWFKRNTLNKPV-------IMGRHTWESIPEK		64		
Sbjct 2			54		
Query 65 N	NRPLKGRINLVLSRELKEPPQGAHFLS--RSLDDALKLTEQPELANKVDMVWIVGGSSVY NRPL GR N++LS + P ++ +S+D+A+ V + ++GG VY NRPLPGRKNIILSSQ----PGTDDRVTWVKSVDEAIA------ACGDVPEIMVIGGGRVY		122		
Sbjct 55			10		
Query 123 K	KEAMNHPGHLKLFVTRIMODFESDTFFPEIDLEKYK-LLPEYPGVLSDVQEEKGIKYKFE ++ + P KL++T I + EDT FP+ + + ++ + E+ D + Y FE		181		
Sbjct $105{ }^{+}$					
	VYEK 185				
Query 182					
Sbjct 159 +	$\text { ILER } 162$				

Table 06. Hit sequence with PDB structure id: 1ZDR

Sequence ID: 1ZDR_A Length: 164 Number of Matches: 1 Range 1: 2 to 160			
$\begin{aligned} & \text { Score } \\ & 80.9 \text { bits(198) } \end{aligned}$	Expect Method Identities $4 \mathrm{e}-19$ Compositional matrix adjust. $56 / 181(31 \%)$	$\begin{array}{ll} \hline \text { Positives } & \text { Gaps } \\ 101 / 181(55 \%) & 22 / 181(12 \%) \end{array}$	
Query 5	LNCIVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGK ++ IVA + +N IGK + LPW L $+\mathrm{YF}+\mathrm{R}+\mathrm{T}$ ++	QNLVIMGKKTWFSIPEK $+M G+K T++I$	64
Sbjct 2	ISHIVAMDENRVIGKDNRLPWH-LPADLAYFKRVTMGHAI	VMGRKTFEAI-	50
Query 65		NKVDMVWIVGGSSVYKE ++ D V+I+GG+ +++	124
Sbjct 51	GRPLPGRDNVVVTGNRSFRPEGCLVL-HSLEEVKQW-----IAS	RADEVFIIGGAELFRA	104
Query 125	AMNHPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVL	DDVQEEKGIKYKFEVYE	184
Sbjct 105	TM--PIVDRLYVTKIFASFPGDTFYPPISDDEWEIVSYTPG---	GKDEKNPYEHAFIIYE	159
Query 185	K 185		
Sbjct 160	R 160		

Appendix part II

Table 07. Hit sequence with PDB structure id: 3JW3

Sequence ID: 3JW3 A Length: 168 Number of Matches: 1			
Range 1: 12 to 166			
$\begin{array}{\|l\|} \hline \text { Score } \\ 78.6 \text { bits(192) } \end{array}$	Expect Method Identities	Positives	Gaps
	3e-18 Compositional matrix adjust. 59/178(33\%)	96/178(53\%)	23/178(12\%)
Query 8	IVAVSQNMGIGKNGDLPWPPLRNEFRYFORMTTTSSVEGKQNL	VIMGKKTWFSIP	NRP 67
	+VA+ +N IGK + +LPW L +E +Y ++ T +	IMG+K + +I	RP
Sbjct 12	MVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHPL-	IMGRKNYEAI-	GRP 60
Query 68	LKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVD	DMVWIVGGSSVYK	EAMN 127
	$\mathrm{LGR} \mathrm{N++++R}+\mathrm{R}$ H $+\mathrm{A}+\mathrm{E} E \mathrm{EL}$	+ ++I+GG+ +Y	+
Sbjct 61	LPGRRNIIVTRN----EGYHV--EGCEVAHSVEEVFELCKNEE	EEIFIIGGAQIYD	LFL- 112
Query 128	HPGHLKLFVTRIMODFESDTFFPEIDLEKYKLLPEYPGVLSDVQ	QEEKGIKYKFEV	EK 185
	P KL++T+I FE DTFFPE+D+ +K + G L+D	$E+\quad Y+V$	
Sbjct 113	-PYVDKLYITKIHHAFEGDTFFPEMDMTNWKEVFVEKG-LTD--	-EKNPYTYYYHV	EK 166

Table 08. Hit sequence with PDB structure id: 2QK8

Sequence ID: 2QK8_A Length: 162 Number of Matches: 1			
Score	Expect Method Identities	Positives Gaps	Gaps
77.4 bits(189)	1e-17 Compositional matrix adjust. 59/178(33\%)	95/178(53\%) 23/1	23/178(12\%)
Query 8 IVA	IVAVSQNMGIGKNGDLPWPPLRNEFRYFQRMTTTSSVEGKQNLVIMGKKTWFSIPEKNRP 67		
	+ VA + +N IGK + +LPW L +E +Y ++ T $+\quad$ IMG $+K++\mathrm{I} \quad$ RP		
Sbjct 6	MVAMDENRVIGKDNNLPWR-LPSELQYVKKTTMGHPL	IMGRKNYEAI---GRP	GRP 54
Query 68 L	LKGRINLVLSRELKEPPQGAHFLSRSLDDALKLTEQPELANKVDMVWIVGGSSVYKEAMN 127		
Sbjct 55 L			
Query 128	HPGHLKLFVTRIMQDFESDTFFPEIDLEKYKLLPEYPGVLSDVQEEKGIKYKFEVYEK 185		
	P KL++T+I FE DTFFPE+D+ +K + G L+D	$E+\quad Y+V Y E K$	
Sbjct 107	-PYVDKLYITKIHHAFEGDTFFPEMDMTNWKEVFVEKG-LTD--	-EKNPYTYYYHVYEK	K 160

Appendix part II

Table 09. Hit sequence with PDB structure id: 2ZZA

Appendix part III

a) Common Core calculation - overall superposition:

As shown, all the local deviation between CA atoms of every matching residues in both structures is less and larger than $2 \AA$ (the residues larger than $2 \AA$ are highlighted in blue color).

Table 01. Residues used for superposition between 3K45 and 1U70

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
1A	V	1A	V	CA	0.597
2A	R	2A	R	CA	0.536
3A	P	3A	P	CA	0.457
4A	L	4A	L	CA	0.512
5A	N	5A	N	CA	0.159
6A	C	6A	C	CA	0.112
7A	I	7A	I	CA	0.130
8A	V	8A	V	CA	0.188
9A	A	9A	A	CA	0.257
10A	V	10A	V	CA	0.329
11A	S	11A	S	CA	0.111
12A	Q	12A	Q	CA	0.166
13A	N	13A	N	CA	0.061
14A	M	14A	M	CA	0.151
15A	G	15A	G	CA	0.332
16A	I	16A	I	CA	0.463
17A	G	17A	G	CA	1.343
18A	K	18A	K	CA	0.524
19A	N	19A	N	CA	0.564
20A	G	20A	G	CA	1.795
21A	D	21A	D	CA	0.981
22A	L	22A	R	CA	0.425
23A	P	23A	P	CA	0.662
24A	W	24A	W	CA	0.613
25A	P	25A	P	CA	0.744
26A	P	26A	P	CA	0.528
27A	L	27A	L	CA	0.363
28A	R	28A	R	CA	0.483
29A	N	29A	N	CA	0.175
30A	E	30A	E	CA	0.403
31A	F	31A	F	CA	0.377
32A	K	32A	K	CA	0.210
33A	Y	33A	Y	CA	0.255
34A	F	34A	F	CA	0.365
35A	Q	35A	Q	CA	0.326
36A	R	36A	R	CA	0.355
37A	M	37A	M	CA	0.457
38A	T	38A	T	CA	0.153
39A	T	39A	T	CA	0.274
40A	T	40A	T	CA	0.165
41A	S	41A	S	CA	0.170

42A	S	42A	S	CA	0.557
43A	V	43A	V	CA	0.303
44A	E	44A	E	CA	0.276
45A	G	45A	G	CA	0.261
46A	K	46A	K	CA	0.365
47A	Q	47A	Q	CA	0.271
48A	N	48A	N	CA	0.232
49A	L	49A	L	CA	0.171
50A	V	50A	V	CA	0.061
51A	I	51A	I	CA	0.136
52A	M	52A	M	CA	0.035
53A	G	53A	G	CA	0.137
54A	R	54A	R	CA	0.216
55A	K	55A	K	CA	0.210
56A	T	56A	T	CA	0.299
57A	W	57A	W	CA	0.162
58A	F	58A	F	CA	0.394
59A	S	59A	S	CA	0.476
60A	I	60A	I	CA	0.460
61A	P	61A	P	CA	0.457
62A	E	62A	E	CA	0.225
63A	K	63A	K	CA	0.450
64A	N	64A	N	CA	0.291
65A	R	65A	R	CA	0.233
66A	P	66A	P	CA	0.365
67A	L	67A	L	CA	0.423
68A	K	68A	K	CA	0.414
69A	D	69A	D	CA	0.354
70A	R	70A	R	CA	0.119
71A	I	71A	I	CA	0.154
72A	N	72A	N	CA	0.146
73A	I	73A	I	CA	0.091
74A	V	74A	V	CA	0.224
75A	L	75A	L	CA	0.238
76A	S	76A	S	CA	0.261
77A	R	77A	R	CA	0.449
78A	E	78A	E	CA	0.729
79A	L	79A	L	CA	0.337
80A	K	80A	K	CA	0.429
81A	E	81A	E	CA	0.804
82A	P	82A	P	CA	0.755
83A	P	83A	P	CA	0.666
84A	R	84A	R	CA	0.386
85A	G	85A	G	CA	0.156
86A	A	86A	A	CA	0.588
87A	H	87A	H	CA	0.238
88A	F	88A	F	CA	0.060
89A	L	89A	L	CA	0.194
90A	A	90A	A	CA	0.207
91A	K	91A	K	CA	0.251
92A	S	92A	S	CA	0.339
93A	L	93A	L	CA	0.063
94A	D	94A	D	CA	0.432

95A	D	95A	D	CA	0.558
96A	A	96A	A	CA	0.181
97A	L	97A	L	CA	0.344
98A	R	98A	R	CA	0.111
99A	L	99A	L	CA	0.222
100A	I	100A	I	CA	0.260
101A	E	101A	E	CA	0.270
102A	Q	102A	Q	CA	0.231
103A	P	103A	P	CA	0.138
104A	D	104A	E	CA	0.359
105A	L	105A	L	CA	0.765
106A	A	106A	A	CA	1.826
107A	S	107A	S	CA	1.763
108A	K	108A	K	CA	0.734
109A	V	109A	V	CA	0.319
110A	D	110A	D	CA	0.389
111A	M	111A	M	CA	0.100
112A	V	112A	V	CA	0.117
113A	W	113A	W	CA	0.031
114A	I	114A	I	CA	0.274
115A	V	115A	V	CA	0.284
116A	G	116A	G	CA	0.736
117A	G	117A	G	CA	1.555
118A	S	118A	S	CA	0.971
119A	S	119A	S	CA	0.975
120A	V	120A	V	CA	0.730
121A	Y	121A	Y	CA	0.481
122A	Q	122A	Q	CA	0.740
123A	E	123A	E	CA	0.694
124A	A	124A	A	CA	0.502
125A	M	125A	M	CA	0.875
126A	N	126A	N	CA	0.557
127A	Q	127A	Q	CA	1.454
128A	P	128A	P	CA	0.735
129A	G	129A	G	CA	0.761
130A	H	130A	H	CA	0.806
131A	L	131A	L	CA	0.542
132A	R	132A	R	CA	0.283
133A	L	133A	L	CA	0.315
134A	F	134A	F	CA	0.137
135A	V	135A	V	CA	0.189
136A	T	136A	T	CA	0.263
137A	R	137A	R	CA	0.309
138A	I	138A	I	CA	0.173
139A	M	139A	M	CA	0.121
140A	Q	140A	Q	CA	0.072
141A	E	141A	E	CA	0.185
142A	F	142A	F	CA	0.395
143A	E	143A	E	CA	0.619
144A	S	144A	S	CA	0.422
145A	D	145A	D	CA	0.556
146A	T	146A	T	CA	0.991
147A	F	147A	F	CA	0.792

Appendix part III

148A	F	148A	F	CA	0.353
149A	P	149A	P	CA	0.340
150A	E	150A	E	CA	0.618
151A	I	151A	I	CA	0.409
152A	D	152A	D	CA	0.434
153A	L	153A	L	CA	0.306
154A	G	154A	G	CA	0.226
155A	K	155A	K	CA	0.425
156A	Y	156A	Y	CA	0.692
157A	K	157A	K	CA	0.294
158A	L	158A	L	CA	0.514
159A	L	159A	L	CA	0.396
160A	P	160A	P	CA	0.218
161A	E	161A	E	CA	0.397
162A	Y	162A	Y	CA	0.360
163A	P	163A	P	CA	0.285
164A	G	164A	G	CA	0.333
165A	V	165A	V	CA	0.300
166A	L	166A	L	CA	0.172
167A	S	167A	S	CA	0.201
168A	E	168A	E	CA	0.035
169A	V	169A	V	CA	0.098
170A	Q	170A	Q	CA	0.228
171A	E	171A	E	CA	0.242
172A	E	172A	E	CA	0.363
173A	K	173A	K	CA	0.333
174A	G	174A	G	CA	0.184
175A	I	175A	I	CA	0.193
176A	K	176A	K	CA	0.186
177A	Y	177A	Y	CA	0.263
178A	K	178A	K	CA	0.148
179A	F	179A	F	CA	0.141
180A	E	180A	E	CA	0.123
181A	V	181A	V	CA	0.205
182A	Y	182A	Y	CA	0.179
183A	E	183A	E	CA	0.238
184A	K	184A	K	CA	0.466
185A	K	185A	K	CA	0.630
186A	D	186A	D	CA	2.596

Appendix part III

Table 02. Residues used for superposition between 3K45 and 1DR1

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
1A	V	1A	V	CA	5.148
2A	R	2A	R	CA	2.101
3A	P	3A	S	CA	0.844
4A	L	4A	L	CA	0.792
5A	N	5A	N	CA	0.568
6A	C	6A	S	CA	0.640
7A	I	7A	I	CA	0.263
8A	V	8A	V	CA	0.186
9A	A	9A	A	CA	0.263
10A	V	10A	V	CA	0.420
11A	S	11A	C	CA	0.309
12A	Q	12A	Q	CA	0.874
13A	N	13A	N	CA	1.066
14A	M	14A	M	CA	0.863
15A	G	15A	G	CA	0.905
16A	I	16A	I	CA	0.759
17A	G	17A	G	CA	1.181
18A	K	18A	K	CA	1.196
19A	N	19A	D	CA	1.529
20A	G	20A	G	CA	1.540
21A	D	21A	N	CA	1.114
22A	L	22A	L	CA	0.814
23A	P	23A	P	CA	0.868
24A	W	24A	W	CA	0.790
25A	P	25A	P	CA	0.798
26A	P	26A	P	CA	1.058
27A	L	27A	L	CA	0.921
28A	R	28A	R	CA	1.313
29A	N	29A	N	CA	0.817
30A	E	30A	E	CA	0.489
31A	F	31A	Y	CA	0.437
32A	K	32A	K	CA	0.122
33A	Y	33A	Y	CA	0.161
34A	F	34A	F	CA	0.153
35A	Q	35A	Q	CA	0.155
36A	R	36A	R	CA	0.175
37A	M	37A	M	CA	0.164
38A	T	38A	T	CA	0.098
39A	T	39A	S	CA	0.178
40A	T	40A	T	CA	0.215
41A	S	41A	S	CA	0.217
42A	S	42A	H	CA	0.788
43A	V	43A	V	CA	0.536
44A	E	44A	E	CA	0.884
45A	G	45A	G	CA	0.624
46A	K	46A	K	CA	0.279
47A	Q	47A	Q	CA	0.145
48A	N	48A	N	CA	0.385
49A	L	49A	A	CA	0.424

50A	V	50A	V	CA	0.125
51A	I	51A	I	CA	0.190
52A	M	52A	M	CA	0.237
53A	G	53A	G	CA	0.229
54A	R	54A	K	CA	0.569
55A	K	55A	K	CA	0.594
56A	T	56A	T	CA	0.342
57A	W	57A	W	CA	0.188
58A	F	58A	F	CA	0.543
59A	S	59A	S	CA	0.498
60A	I	60A	I	CA	0.432
61A	P	61A	P	CA	0.687
62A	E	62A	E	CA	0.803
63A	K	63A	K	CA	1.365
64A	N	64A	N	CA	1.009
65A	R	65A	R	CA	0.490
66A	P	66A	P	CA	0.252
67A	L	67A	L	CA	0.346
68A	K	68A	K	CA	0.150
69A	D	69A	D	CA	0.346
70A	R	70A	R	CA	0.280
71A	I	71A	I	CA	0.428
72A	N	72A	N	CA	0.429
73A	I	73A	I	CA	0.358
74A	V	74A	V	CA	0.447
75A	L	75A	L	CA	0.370
76A	S	76A	S	CA	0.635
77A	R	77A	R	CA	0.848
78A	E	78A	E	CA	0.982
79A	L	79A	L	CA	0.881
80A	K	80A	K	CA	0.640
81A	E	81A	E	CA	0.664
82A	P	82A	A	CA	0.574
83A	P	83A	P	CA	0.698
84A	R	84A	K	CA	0.732
85A	G	85A	G	CA	0.795
86A	A	86A	A	CA	0.548
87A	H	87A	H	CA	0.550
88A	F	88A	Y	CA	0.488
89A	L	89A	L	CA	0.472
90A	A	90A	S	CA	0.303
91A	K	91A	K	CA	0.776
92A	S	92A	S	CA	0.790
93A	L	93A	L	CA	0.726
94A	D	94A	D	CA	0.467
95A	D	95A	D	CA	0.292
96A	A	96A	A	CA	0.230
97A	L	97A	L	CA	0.482
98A	R	98A	A	CA	0.606
99A	L	99A	L	CA	0.549
100A	I	100A	L	CA	0.373
101A	E	101A	D	CA	0.853
102A	Q	102A	S	CA	1.257

103A	P	103A	P	CA	2.146
104A	D	104A	E	CA	1.674
105A	L	105A	L	CA	1.366
106A	A	106A	K	CA	2.125
107A	S	107A	S	CA	1.970
108A	K	108A	K	CA	0.459
109A	V	109A	V	CA	0.111
110A	D	110A	D	CA	0.271
111A	M	111A	M	CA	0.289
112A	V	112A	V	CA	0.221
113A	W	113A	W	CA	0.237
114A	I	114A	I	CA	0.453
115A	V	115A	V	CA	0.446
116A	G	116A	G	CA	1.128
117A	G	117A	G	CA	0.884
118A	S	118A	T	CA	1.305
119A	S	119A	A	CA	1.523
120A	V	120A	V	CA	0.813
121A	Y	121A	Y	CA	0.835
122A	Q	122A	K	CA	1.392
123A	E	123A	A	CA	1.232
124A	A	124A	A	CA	1.172
125A	M	125A	M	CA	1.405
126A	N	126A	E	CA	1.746
127A	Q	127A	K	CA	1.230
128A	P	128A	P	CA	1.191
129A	G	129A	I	CA	1.288
130A	H	130A	N	CA	0.880
131A	L	131A	H	CA	1.381
132A	R	132A	R	CA	1.163
133A	L	133A	L	CA	0.724
134A	F	134A	F	CA	0.423
135A	V	135A	V	CA	0.239
136A	T	136A	T	CA	0.226
137A	R	137A	R	CA	0.347
138A	I	138A	I	CA	0.426
139A	M	139A	L	CA	0.601
140A	Q	140A	H	CA	0.593
141A	E	141A	E	CA	0.950
142A	F	142A	F	CA	1.077
143A	E	143A	E	CA	1.016
144A	S	144A	S	CA	1.161
145A	D	145A	D	CA	0.867
146A	T	146A	T	CA	1.616
147A	F	147A	F	CA	1.158
148A	F	148A	F	CA	0.760
149A	P	149A	P	CA	1.082
150A	E	150A	E	CA	1.325
151A	I	151A	I	CA	1.901
152A	D	152A	D	CA	2.196
153A	L	153A	Y	CA	1.534
154A	G	154A	K	CA	1.056
155A	K	155A	D	CA	1.076

156A	Y	156A	F	CA	0.562
157A	K	157A	K	CA	0.706
158A	L	158A	L	CA	0.450
159A	L	159A	L	CA	0.829
160A	P	160A	T	CA	1.159
161A	E	161A	E	CA	1.221
162A	Y	162A	Y	CA	1.271
163A	P	163A	P	CA	1.421
164A	G	164A	G	CA	1.572
165A	V	165A	V	CA	1.189
166A	L	166A	P	CA	1.215
167A	S	167A	A	CA	1.261
168A	E	168A	D	CA	1.415
169A	V	169A	I	CA	0.990
170A	Q	170A	Q	CA	0.866
171A	E	171A	E	CA	0.842
172A	E	172A	E	CA	1.038
173A	K	173A	D	CA	0.566
174A	G	174A	G	CA	0.536
175A	I	175A	I	CA	0.777
176A	K	176A	Q	CA	0.484
177A	Y	177A	Y	CA	0.582
178A	K	178A	K	CA	1.026
179A	F	179A	F	CA	0.716
180A	E	180A	E	CA	0.628
181A	V	181A	V	CA	0.460
182A	Y	182A	Y	CA	0.289
183A	E	183A	Q	CA	0.611
184A	K	184A	K	CA	0.564
185A	K	185A	S	CA	1.014
186A	D	186A	V	CA	1.438

Appendix part III

Table 03. Residues used for superposition between 3 K 45 and 4 H 95

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (Å)
1A	V				
2A	R	4A	P	CA	2.017
3A	P	5A	N	CA	2.358
4A	L	6A	V	CA	1.159
5A	N	7A	A	CA	0.702
6A	C	8A	1	CA	0.368
7A	I	9A	I	CA	0.262
8A	V	10A	V	CA	0.213
9A	A	11A	A	CA	0.307
10A	V	12A	A	CA	0.273
11A	S	13A	L	CA	0.597
12A	Q	14A	K	CA	1.557
		15A	P		
13A	N	16A	A	CA	2.372
14A	M	17A	L	CA	0.961
15A	G	18A	G	CA	0.299
16A	I	19A	I	CA	0.583
17A	G	20A	G	CA	1.277
18A	K	21A	Y	CA	0.972
19A	N	22A	K	CA	1.078
20A	G	23A	G	CA	1.138
21A	D	24A	K	CA	0.942
22A	L	25A	M	CA	0.565
23A	P	26A	P	CA	1.925
24A	W	27A	W	CA	2.149
25A	P				
26A	P	28A	R	CA	0.988
27A	L	29A	L	CA	0.791
28A	R	30A	R	CA	1.353
29A	N	31A	K	CA	0.909
30A	E	32A	E	CA	0.696
31A	F	33A	I	CA	0.393
32A	K	34A	R	CA	0.457
33A	Y	35A	Y	CA	0.544
34A	F	36A	F	CA	0.462
35A	Q	37A	K	CA	0.415
36A	R	38A	D	CA	0.704
37A	M	39A	V	CA	0.634
38A	T	40A	T	CA	0.467
39A	T	41A	T	CA	0.709
40A	T	42A	R	CA	0.677
41A	S	43A	T	CA	1.165
42A	S	44A	T	CA	1.405
43A	V	45A	K	CA	1.622
44A	E	46A	P	CA	2.635
45A	G	47A	N	CA	2.169
46A	K	48A	T	CA	0.970
47A	Q	49A	R	CA	0.729

48A	N	50A	N	CA	0.550
49A	L	51A	A	CA	0.526
50A	V	52A	V	CA	0.331
51A	I	53A	I	CA	0.357
52A	M	54A	M	CA	0.255
53A	G	55A	G	CA	0.273
54A	R	56A	R	CA	0.294
55A	K	57A	K	CA	0.392
56A	T	58A	T	CA	0.414
57A	W	59A	W	CA	0.432
58A	F	60A	E	CA	0.572
59A	S	61A	S	CA	0.456
60A	I	62A	I	CA	0.469
61A	P	63A	P	CA	0.209
62A	E	64A	Q	CA	0.817
63A	K	65A	K	CA	0.680
64A	N	66A	F	CA	0.306
65A	R	67A	R	CA	0.519
66A	P	68A	P	CA	0.572
67A	L	69A	L	CA	0.707
68A	K	70A	P	CA	0.867
69A	D	71A	D	CA	0.315
70A	R	72A	R	CA	0.354
71A	I	73A	L	CA	0.469
72A	N	74A	N	CA	0.450
73A	I	75A	I	CA	0.534
74A	V	76A	I	CA	0.326
75A	L	77A	L	CA	0.325
76A	S	78A	S	CA	0.938
77A	R	79A	R	CA	1.874
78A	E	80A	S	CA	2.812
79A	L	81A	Y	CA	4.970
80A	K	82A	E	CA	5.738
		83A	N		
81A	E	84A	E	CA	7.243
82A	P	85A	I	CA	7.050
83A	P	86A	I	CA	7.573
84A	R	87A	D	CA	8.414
85A	G	88A	D	CA	8.595
86A	A	89A	N	CA	5.265
87A	H	90A	I	CA	1.180
88A	F	91A	I	CA	0.369
89A	L	92A	H	CA	0.119
90A	A	93A	A	CA	0.067
91A	K	94A	S	CA	1.437
92A	S	95A	S	CA	2.022
93A	L	96A	I	CA	2.583
94A	D	97A	E	CA	2.137
95A	D	98A	S	CA	1.493
96A	A	99A	S	CA	1.697
97A	L	100A	L	CA	2.898
98A	R	101A	N	CA	2.794
99A	L	102A	L	CA	2.366

100A	I	103A	V	CA	2.950
101A	E				
102A	Q				
103A	P				
104A	D				
105A	L				
106A	A	104A	S	CA	4.044
107A	S	105A	D	CA	3.378
108A	K				
109A	V	106A	V	CA	1.363
110A	D	107A	E	CA	1.005
111A	M	108A	R	CA	0.706
112A	V	109A	V	CA	0.607
113A	W	110A	F	CA	0.495
114A	I	111A	I	CA	0.484
115A	V	112A	I	CA	0.355
116A	G	113A	G	CA	0.349
117A	G	114A	G	CA	0.420
118A	S	115A	A	CA	0.932
119A	S	116A	E	CA	1.079
120A	V	117A	I	CA	0.971
121A	Y	118A	Y	CA	1.138
122A	Q	119A	N	CA	1.786
123A	E	120A	E	CA	2.044
124A	A	121A	L	CA	1.391
125A	M	122A	I	CA	1.129
126A	N	123A	N	CA	1.760
127A	Q	124A	N	CA	1.109
128A	P	125A	S	CA	1.762
129A	G	126A	L	CA	4.429
130A	H	127A	V	CA	4.921
131A	L	128A	S	CA	1.301
132A	R	129A	H	CA	0.552
133A	L	130A	L	CA	0.517
134A	F	131A	L	CA	0.321
135A	V	132A	I	CA	0.276
136A	T	133A	T	CA	0.451
137A	R	134A	E	CA	0.692
138A	I	135A	I	CA	0.943
139A	M	136A	E	CA	0.459
140A	Q	137A	H	CA	2.027
		138A	P		
		139A	S		
		140A	P		
141A	E	141A	E	CA	4.883
		142A	S		
142A	F	143A	I	CA	3.227
143A	E	144A	E	CA	2.151
144A	S	145A	M	CA	1.399
145A	D	146A	D	CA	1.390
146A	T	147A	T	CA	0.746
147A	F	148A	F	CA	0.642
148A	F	149A	L	CA	0.986

Appendix part III

149A	P	150A	K	CA	1.511
150A	E	151A	F	CA	2.314
151A	I	152A	P	CA	3.418
152A	D	153A	L	CA	2.453
153A	L	154A	E	CA	2.494
154A	G				
155A	K	155A	S	CA	2.148
156A	Y	156A	W	CA	1.104
157A	K	157A	T	CA	1.154
158A	L	158A	K	CA	0.491
159A	L	159A	Q	CA	0.493
160A	P	160A	P	CA	0.746
161A	E	161A	K	CA	1.788
		162A	S		
		163A	E		
162A	Y	164A	L	CA	1.444
163A	P	165A	Q	CA	1.911
		166A	K		
		167A	F		
		168A	V		
		169A	G		
164A	G	170A	D	CA	4.688
		171A	T		
		172A	V		
165A	V	173A	L	CA	4.194
166A	L	174A	E	CA	4.338
167A	S				
168A	E	175A	D	CA	1.261
169A	V	176A	D	CA	1.003
170A	Q	177A	I	CA	0.725
171A	E	178A	K	CA	1.039
172A	E	179A	E	CA	1.419
173A	K	180A	G	CA	2.560
174A	G	181A	D	CA	3.038
175A	I	182A	F	CA	1.481
176A	K	183A	T	CA	0.750
177A	Y	184A	Y	CA	0.663
178A	K	185A	N	CA	0.665
179A	F	186A	Y	CA	0.631
180A	E	187A	T	CA	0.697
181A	V	188A	L	CA	0.626
182A	Y	189A	W	CA	0.409
183A	E	190A	T	CA	0.912
184A	K	191A	R	CA	1.588
185A	K	192A	K	CA	6.345
186A	D				

Appendix part III

Table 04. Residues used for superposition between 3K45 and 4GH8

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (Å)
1A	V				
2A	R				
3A	P	1A	M	CA	0.684
4A	L	2A	I	CA	0.533
5A	N	3A	S	CA	0.947
6A	C	4A	L	CA	0.422
7A	I	5A	I	CA	0.190
8A	V	6A	A	CA	0.162
9A	A	7A	A	CA	0.398
10A	V	8A	L	CA	0.218
11A	S	9A	A	CA	1.070
12A	Q	10A	V	CA	1.739
13A	N	11A	D	CA	1.022
14A	M	12A	R	CA	0.843
15A	G	13A	V	CA	0.374
16A	I	14A	I	CA	0.395
17A	G	15A	G	CA	0.315
18A	K	16A	M	CA	0.826
19A	N	17A	E	CA	1.246
20A	G	18A	N	CA	0.847
21A	D	19A	A	CA	0.284
22A	L	20A	M	CA	0.372
23A	P	21A	P	CA	1.485
24A	W	22A	W	CA	0.902
25A	P	23A	P	CA	0.984
26A	P	24A	P	CA	0.905
27A	L	25A	L	CA	0.694
28A	R	26A	P	CA	1.221
29A	N	27A	A	CA	1.389
30A	E	28A	D	CA	0.855
31A	F	29A	L	CA	0.619
32A	K	30A	A	CA	0.877
33A	Y	31A	W	CA	0.816
34A	F	32A	F	CA	0.337
35A	Q	33A	K	CA	0.843
36A	R	34A	R	CA	1.055
37A	M	35A	N	CA	0.935
38A	T	36A	T	CA	0.474
39A	T				
40A	T	37A	L	CA	3.724
41A	S	38A	N	CA	4.033
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				

Appendix part III

48A	N	39A	K	CA	1.020
49A	L	40A	P	CA	0.560
50A	V	41A	V	CA	0.421
51A	I	42A	I	CA	0.381
52A	M	43A	M	CA	0.182
53A	G	44A	G	CA	0.222
54A	R	45A	R	CA	0.381
55A	K	46A	H	CA	0.622
56A	T	47A	T	CA	0.437
57A	W	48A	W	CA	0.278
58A	F	49A	E	CA	1.008
59A	S	50A	S	CA	0.776
60A	I	51A	I	CA	0.665
61A	P	52A	P	CA	0.984
62A	E	53A	E	CA	1.482
63A	K	54A	K	CA	2.072
64A	N	55A	N	CA	1.259
65A	R	56A	R	CA	0.745
66A	P	57A	P	CA	0.602
67A	L	58A	L	CA	0.325
68A	K	59A	P	CA	0.425
69A	D	60A	G	CA	0.652
70A	R	61A	R	CA	0.404
71A	I	62A	K	CA	0.504
72A	N	63A	N	CA	0.425
73A	I	64A	I	CA	0.315
74A	V	65A	I	CA	0.298
75A	L	66A	L	CA	0.303
76A	S	67A	S	CA	0.431
77A	R	68A	S	CA	0.360
78A	E	69A	Q	CA	1.410
79A	L				
80A	K	70A	P	CA	1.456
81A	E				
82A	P	71A	G	CA	3.467
83A	P	72A	T	CA	3.605
84A	R	73A	D	CA	2.215
		74A	D		
85A	G	75A	R	CA	2.158
86A	A	76A	V	CA	1.094
87A	H				
88A	F	77A	T	CA	1.286
89A	L	78A	W	CA	1.056
90A	A	79A	V	CA	0.873
91A	K	80A	K	CA	0.512
92A	S	81A	S	CA	0.901
93A	L	82A	V	CA	1.208
94A	D	83A	D	CA	1.324
95A	D	84A	E	CA	1.274
96A	A	85A	A	CA	1.306
97A	L	86A	I	CA	0.922
98A	R	87A	A	CA	2.511
99A	L	88A	A	CA	3.109

100A	I	89A	C	CA	2.541
101A	E	90A	G	CA	3.596
102A	Q				
103A	P				
104A	D				
105A	L				
106A	A	91A	D	CA	4.319
107A	S				
108A	K				
109A	V	92A	V	CA	4.607
110A	D	93A	P	CA	4.728
111A	M	94A	E	CA	2.883
112A	V	95A	I	CA	1.188
113A	W	96A	M	CA	0.470
114A	I	97A	V	CA	0.398
115A	V	98A	I	CA	0.329
116A	G	99A	G	CA	0.610
117A	G	100A	G	CA	0.456
118A	S	101A	G	CA	0.427
119A	S	102A	R	CA	0.411
120A	V	103A	V	CA	0.371
121A	Y	104A	Y	CA	0.335
122A	Q	105A	E	CA	0.249
123A	E	106A	Q	CA	0.173
124A	A	107A	F	CA	0.154
125A	M	108A	L	CA	0.949
126A	N	109A	P	CA	2.871
127A	Q				
128A	P				
129A	G	110A	K	CA	5.057
130A	H	111A	A	CA	4.784
131A	L	112A	Q	CA	1.794
132A	R	113A	K	CA	0.819
133A	L	114A	L	CA	0.706
134A	F	115A	Y	CA	0.290
135A	V	116A	L	CA	0.614
136A	T	117A	T	CA	0.503
137A	R	118A	H	CA	0.698
138A	I	119A	I	CA	0.808
139A	M	120A	D	CA	2.153
140A	Q	121A	A	CA	2.892
141A	E	122A	E	CA	1.457
142A	F	123A	V	CA	1.505
143A	E	124A	E	CA	1.189
144A	S	125A	G	CA	0.995
145A	D	126A	D	CA	0.989
146A	T	127A	T	CA	0.936
147A	F	128A	H	CA	0.620
148A	F	129A	F	CA	0.592
149A	P	130A	P	CA	0.715
150A	E	131A	D	CA	1.077
151A	I	132A	Y	CA	1.459
152A	D	133A	E	CA	0.284

Appendix part III

153A	L	134A	P	CA	0.505
154A	G	135A	D	CA	0.792
155A	K	136A	D	CA	0.778
156A	Y	137A	W	CA	1.106
157A	K	138A	E	CA	1.378
158A	L	139A	S	CA	1.250
159A	L	140A	V	CA	1.167
160A	P				
161A	E	141A	F	CA	3.043
162A	Y				
163A	P				
164A	G				
165A	V				
166A	L				
167A	S	142A	S	CA	3.527
168A	E	143A	E	CA	3.052
169A	V	144A	F	CA	1.348
170A	Q	145A	H	CA	1.192
171A	E	146A	D	CA	2.885
172A	E	147A	A	CA	3.522
		148A	D		
		149A	A		
		150A	Q		
		151A	N		
173A	K	152A	S	CA	1.503
174A	G				
175A	I	153A	H	CA	0.884
176A	K	154A	S	CA	0.851
177A	Y	155A	Y	CA	0.596
178A	K	156A	C	CA	0.718
179A	F	157A	F	CA	0.571
180A	E	158A	E	CA	0.569
181A	V	159A	I	CA	0.727
182A	Y	160A	L	CA	1.058
183A	E	161A	E	CA	1.273
184A	K	162A	R	CA	1.614
185A	K				
186A	D				

Appendix part III

Table 05. Residues used for superposition between 3K45 and 1ZDR

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
1A	V				
2A	R				
3A	P	1A	M	CA	1.446
4A	L	2A	I	CA	0.991
5A	N	3A	S	CA	0.760
6A	C	4A	H	CA	0.363
7A	I	5A	I	CA	0.188
8A	V	6A	V	CA	0.154
9A	A	7A	A	CA	0.274
10A	V	8A	M	CA	0.554
11A	S	9A	D	CA	0.410
12A	Q	10A	E	CA	0.428
13A	N	11A	N	CA	0.817
14A	M	12A	R	CA	0.830
15A	G	13A	V	CA	0.384
16A	I	14A	I	CA	0.371
17A	G	15A	G	CA	0.792
18A	K	16A	K	CA	0.394
19A	N	17A	D	CA	0.569
20A	G	18A	N	CA	0.671
21A	D	19A	R	CA	0.810
22A	L	20A	L	CA	1.065
23A	P	21A	P	CA	2.178
24A	W	22A	W	CA	1.471
25A	P				
26A	P	23A	H	CA	1.968
27A	L	24A	L	CA	1.276
28A	R	25A	P	CA	1.484
29A	N	26A	A	CA	1.526
30A	E	27A	D	CA	0.796
31A	F	28A	L	CA	0.263
32A	K	29A	A	CA	0.416
33A	Y	30A	Y	CA	0.052
34A	F	31A	F	CA	0.141
35A	Q	32A	K	CA	0.338
36A	R	33A	R	CA	0.465
37A	M	34A	V	CA	0.509
38A	T	35A	T	CA	0.771
39A	T	36A	M	CA	0.973
40A	T	37A	G	CA	5.192
41A	S				
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				
48A	N	38A	H	CA	1.340
49A	L	39A	A	CA	0.705

Appendix part III

50A	V	40A	I	CA	0.796
51A	I	41A	V	CA	0.574
52A	M	42A	M	CA	0.349
53A	G	43A	G	CA	0.380
54A	R	44A	R	CA	0.707
55A	K	45A	K	CA	0.714
56A	T	46A	T	CA	0.236
57A	W	47A	F	CA	0.467
58A	F	48A	E	CA	1.041
59A	S	49A	A	CA	0.458
60A	I	50A	I	CA	0.804
61A	P				
62A	E	51A	G	CA	3.653
63A	K				
64A	N				
65A	R	52A	R	CA	2.741
66A	P	53A	P	CA	1.364
67A	L	54A	L	CA	1.256
68A	K	55A	P	CA	1.234
69A	D	56A	G	CA	1.284
70A	R	57A	R	CA	1.415
71A	I	58A	D	CA	0.890
72A	N	59A	N	CA	0.804
73A	I	60A	V	CA	0.730
74A	V	61A	V	CA	0.435
75A	L	62A	V	CA	0.727
76A	S	63A	T	CA	0.557
77A	R	64A	G	CA	1.083
78A	E	65A	N	CA	1.897
79A	L	66A	R	CA	3.934
80A	K	67A	S	CA	2.886
81A	E	68A	F	CA	4.654
82A	P	69A	R	CA	2.432
83A	P	70A	P	CA	1.266
84A	R	71A	E	CA	1.973
85A	G	72A	G	CA	2.435
86A	A	73A	C	CA	1.420
87A	H				
88A	F	74A	L	CA	0.742
89A	L	75A	V	CA	0.556
90A	A	76A	L	CA	0.424
91A	K	77A	H	CA	1.213
92A	S	78A	S	CA	3.326
93A	L	79A	L	CA	5.193
94A	D	80A	E	CA	4.835
95A	D	81A	E	CA	1.817
96A	A	82A	V	CA	2.483
97A	L	83A	K	CA	3.752
98A	R	84A	Q	CA	1.373
99A	L	85A	W	CA	1.891
100A	I	86A	I	CA	4.340
101A	E	87A	A	CA	3.660
102A	Q	88A	S	CA	3.836

Appendix part III

103A	P				
104A	D				
105A	L	89A	R	CA	7.323
106A	A	90A	A	CA	6.126
107A	S				
108A	K				
109A	V				
110A	D	91A	D	CA	2.147
111A	M	92A	E	CA	1.644
112A	V	93A	V	CA	0.467
113A	W	94A	F	CA	0.506
114A	I	95A	I	CA	0.386
115A	V	96A	I	CA	0.495
116A	G	97A	G	CA	0.293
117A	G	98A	G	CA	1.242
118A	S	99A	A	CA	0.698
119A	S	100A	E	CA	0.520
120A	V	101A	L	CA	0.714
121A	Y	102A	F	CA	0.531
122A	Q	103A	R	CA	0.503
123A	E	104A	A	CA	0.754
124A	A	105A	T	CA	1.066
125A	M	106A	M	CA	0.924
126A	N	107A	P	CA	3.230
127A	Q				
128A	P				
129A	G	108A	I	CA	4.967
130A	H	109A	V	CA	4.938
131A	L	110A	D	CA	1.254
132A	R	111A	R	CA	0.414
133A	L	112A	L	CA	0.494
134A	F	113A	Y	CA	0.175
135A	V	114A	V	CA	0.135
136A	T	115A	T	CA	0.144
137A	R	116A	K	CA	0.340
138A	I	117A	I	CA	0.520
139A	M	118A	F	CA	0.551
140A	Q	119A	A	CA	0.295
141A	E	120A	S	CA	0.440
142A	F	121A	F	CA	0.593
143A	E	122A	P	CA	0.942
144A	S	123A	G	CA	0.318
145A	D	124A	D	CA	0.141
146A	T	125A	T	CA	0.799
147A	F	126A	F	CA	0.731
148A	F	127A	Y	CA	0.599
149A	P	128A	P	CA	0.210
150A	E	129A	P	CA	0.330
151A	I	130A	I	CA	0.501
152A	D	131A	S	CA	0.430
153A	L	132A	D	CA	0.948
154A	G	133A	D	CA	0.808
155A	K	134A	E	CA	0.023

156A	Y	135A	W	CA	0.477
157A	K	136A	E	CA	1.138
158A	L	137A	I	CA	0.873
159A	L	138A	V	CA	0.833
160A	P				
161A	E	139A	S	CA	2.775
162A	Y				
163A	P				
164A	G				
165A	V	140A	Y	CA	7.503
166A	L	141A	T	CA	4.085
167A	S				
168A	E	142A	P	CA	2.480
169A	V	143A	G	CA	3.115
170A	Q	144A	G	CA	2.023
171A	E	145A	K	CA	1.427
172A	E	146A	D	CA	4.237
		147A	E		
		148A	K		
173A	K	149A	N	CA	3.571
174A	G	150A	P	CA	2.095
175A	I	151A	Y	CA	1.121
176A	K	152A	E	CA	1.290
177A	Y	153A	H	CA	0.774
178A	K	154A	A	CA	0.590
179A	F	155A	F	CA	0.320
180A	E	156A	I	CA	0.226
181A	V	157A	I	CA	0.316
182A	Y	158A	Y	CA	0.443
183A	E	159A	E	CA	0.780
184A	K	160A	R	CA	1.737
185A	K	161A	K	CA	6.138
186A	D				

Appendix part III

Table 06. Residues used for superposition between 3K45 and 3JW3

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (Å)
		-2A	H		
		-1A	H		
		0A	H		
1A	V	1A	M	CA	2.845
2A	R				
3A	P	2A	R	CA	1.056
4A	L	3A	V	CA	0.262
5A	N	4A	S	CA	0.675
6A	C	5A	F	CA	0.699
7A	I	6A	M	CA	0.228
8A	V	7A	V	CA	0.445
9A	A	8A	A	CA	0.164
10A	V	9A	M	CA	0.463
11A	S	10A	D	CA	0.173
12A	Q	11A	E	CA	0.316
13A	N	12A	N	CA	0.832
14A	M	13A	R	CA	0.750
15A	G	14A	V	CA	0.449
16A	I	15A	I	CA	0.430
17A	G	16A	G	CA	0.737
18A	K	17A	K	CA	0.594
19A	N	18A	D	CA	0.627
20A	G	19A	N	CA	0.691
21A	D	20A	N	CA	0.636
22A	L	21A	L	CA	1.094
23A	P	22A	P	CA	1.815
24A	W	23A	W	CA	1.753
25A	P				
26A	P	24A	R	CA	1.245
27A	L	25A	L	CA	0.129
28A	R	26A	P	CA	0.412
29A	N	27A	S	CA	0.464
30A	E	28A	E	CA	0.447
31A	F	29A	L	CA	0.511
32A	K	30A	Q	CA	0.463
33A	Y	31A	Y	CA	0.187
34A	F	32A	V	CA	0.441
35A	Q	33A	K	CA	0.441
36A	R	34A	K	CA	0.345
37A	M	35A	T	CA	0.425
38A	T	36A	T	CA	0.796
39A	T				
40A	T	37A	M	CA	3.022
41A	S	38A	G	CA	4.369
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				

Appendix part III

47A	Q				
48A	N	39A	H	CA	1.230
49A	L	40A	P	CA	0.811
50A	V	41A	L	CA	0.800
51A	I	42A	I	CA	0.842
52A	M	43A	M	CA	0.629
53A	G	44A	G	CA	0.592
54A	R	45A	R	CA	0.540
55A	K	46A	K	CA	0.893
56A	T	47A	N	CA	0.949
57A	W	48A	Y	CA	0.934
58A	F	49A	E	CA	1.052
59A	S	50A	A	CA	1.036
60A	I	51A	I	CA	1.177
61A	P				
62A	E	52A	G	CA	3.985
63A	K				
64A	N				
65A	R	53A	R	CA	2.688
66A	P	54A	P	CA	1.396
67A	L	55A	L	CA	1.318
68A	K	56A	P	CA	0.968
69A	D	57A	G	CA	0.334
70A	R	58A	R	CA	0.569
71A	I	59A	R	CA	0.776
72A	N	60A	N	CA	0.888
73A	I	61A	I	CA	0.902
74A	V	62A	I	CA	0.709
75A	L	63A	V	CA	0.642
76A	S	64A	T	CA	0.866
77A	R	65A	R	CA	0.591
78A	E	66A	N	CA	1.020
		67A	E		
79A	L	68A	G	CA	3.625
80A	K	69A	Y	CA	3.826
81A	E	70A	H	CA	3.282
82A	P				
83A	P	71A	V	CA	1.359
84A	R	72A	E	CA	1.980
85A	G	73A	G	CA	2.439
86A	A	74A	C	CA	0.739
87A	H				
88A	F	75A	E	CA	1.397
89A	L	76A	V	CA	0.739
90A	A	77A	A	CA	0.705
91A	K	78A	H	CA	0.705
92A	S	79A	S	CA	0.770
93A	L	80A	V	CA	1.674
94A	D	81A	E	CA	1.627
95A	D	82A	E	CA	0.979
96A	A	83A	V	CA	0.730
97A	L	84A	F	CA	0.959
98A	R	85A	E	CA	2.025

99A	L	86A	L	CA	2.135
100A	I	87A	C	CA	1.126
101A	E				
102A	Q	88A	K	CA	4.236
103A	P				
104A	D				
105A	L				
106A	A	89A	N	CA	3.425
107A	S				
108A	K				
109A	V	90A	E	CA	3.870
110A	D	91A	E	CA	3.729
111A	M	92A	E	CA	2.445
112A	V	93A	I	CA	0.815
113A	W	94A	F	CA	0.678
114A	I	95A	I	CA	0.700
115A	V	96A	I	CA	0.818
116A	G	97A	G	CA	0.939
117A	G	98A	G	CA	0.717
118A	S	99A	A	CA	0.739
119A	S	100A	Q	CA	0.624
120A	V	101A	I	CA	0.723
121A	Y	102A	Y	CA	0.857
122A	Q	103A	D	CA	1.020
123A	E	104A	L	CA	1.171
124A	A	105A	F	CA	0.950
125A	M	106A	L	CA	0.822
126A	N	107A	P	CA	2.387
127A	Q				
128A	P				
129A	G	108A	Y	CA	4.978
130A	H	109A	V	CA	5.373
131A	L	110A	D	CA	1.419
132A	R	111A	K	CA	0.784
133A	L	112A	L	CA	1.061
134A	F	113A	Y	CA	0.257
135A	V	114A	I	CA	0.218
136A	T	115A	T	CA	0.241
137A	R	116A	K	CA	0.391
138A	I	117A	I	CA	0.590
139A	M	118A	H	CA	1.051
140A	Q	119A	H	CA	1.054
141A	E	120A	A	CA	0.726
142A	F	121A	F	CA	0.540
143A	E	122A	E	CA	0.794
144A	S	123A	G	CA	1.006
145A	D	124A	D	CA	0.135
146A	T	125A	T	CA	1.049
147A	F	126A	F	CA	0.802
148A	F	127A	F	CA	0.492
149A	P	128A	P	CA	0.853
150A	E	129A	E	CA	1.117
151A	I	130A	M	CA	2.847

Appendix part III

152A	D	131A	D	CA	2.080
153A	L	132A	M	CA	2.056
154A	G	133A	T	CA	0.931
155A	K	134A	N	CA	3.787
156A	Y	135A	W	CA	2.262
157A	K	136A	K	CA	1.835
158A	L	137A	E	CA	1.539
159A	L	138A	V	CA	1.597
160A	P				
161A	E	139A	F	CA	2.940
162A	Y				
163A	P				
164A	G				
165A	V				
166A	L				
167A	S	140A	V	CA	3.249
168A	E	141A	E	CA	3.133
169A	V	142A	K	CA	1.992
170A	Q	143A	G	CA	2.484
		144A	L		
171A	E	145A	T	CA	1.766
172A	E	146A	D	CA	3.854
		147A	E		
		148A	K		
		149A	N		
173A	K	150A	P	CA	1.542
174A	G				
175A	I	151A	Y	CA	0.410
176A	K	152A	T	CA	0.338
177A	Y	153A	Y	CA	0.338
178A	K	154A	Y	CA	0.515
179A	F	155A	Y	CA	0.534
180A	E	156A	H	CA	0.601
181A	V	157A	V	CA	0.755
182A	Y	158A	Y	CA	1.247
183A	E	159A	E	CA	1.764
184A	K	160A	K	CA	1.956
185A	K	161A	Q	CA	4.283
186A	D	162A	Q	CA	5.253

Appendix part III

Table 07. Residues used for superposition between 3K45 and 2QK8

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (${ }^{\text {(}}$)
1A	V				
2A	R	1A	M	CA	0.279
3A	P	2A	I	CA	0.724
4A	L	3A	V	CA	0.589
5A	N	4A	S	CA	1.011
6A	C	5A	F	CA	0.875
7A	I	6A	M	CA	0.637
8A	V	7A	V	CA	0.520
9A	A	8A	A	CA	0.345
10A	V	9A	M	CA	0.787
11A	S	10A	D	CA	0.459
12A	Q	11A	E	CA	0.412
13A	N	12A	N	CA	0.548
14A	M	13A	R	CA	0.645
15A	G	14A	V	CA	0.550
16A	I	15A	I	CA	0.418
17A	G	16A	G	CA	0.588
18A	K	17A	K	CA	0.502
19A	N	18A	D	CA	0.287
20A	G	19A	N	CA	0.261
21A	D	20A	N	CA	1.000
22A	L	21A	L	CA	0.891
23A	P	22A	P	CA	1.295
24A	W	23A	W	CA	1.664
25A	P				
26A	P	24A	R	CA	1.070
27A	L	25A	L	CA	0.336
28A	R	26A	P	CA	0.202
29A	N	27A	S	CA	0.259
30A	E	28A	E	CA	0.373
31A	F	29A	L	CA	0.453
32A	K	30A	Q	CA	0.351
33A	Y	31A	Y	CA	0.448
34A	F	32A	V	CA	0.438
35A	Q	33A	K	CA	0.413
36A	R	34A	K	CA	0.393
37A	M	35A	T	CA	0.647
38A	T	36A	T	CA	0.485
39A	T				
40A	T	37A	M	CA	3.620
41A	S	38A	G	CA	4.438
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				
48A	N	39A	H	CA	1.359
49A	L	40A	P	CA	1.038

Appendix part III

50A	V	41A	L	CA	1.025
51A	I	42A	I	CA	0.785
52A	M	43A	M	CA	0.635
53A	G	44A	G	CA	0.528
54A	R	45A	R	CA	0.972
55A	K	46A	K	CA	0.961
56A	T	47A	N	CA	0.845
57A	W	48A	Y	CA	1.152
58A	F	49A	E	CA	1.696
59A	S	50A	A	CA	1.502
60A	I	51A	I	CA	1.174
61A	P	52A	G	CA	2.894
62A	E				
63A	K				
64A	N				
65A	R	53A	R	CA	2.452
66A	P	54A	P	CA	1.418
67A	L	55A	L	CA	0.664
68A	K	56A	P	CA	0.183
69A	D	57A	G	CA	0.757
70A	R	58A	R	CA	0.673
71A	I	59A	R	CA	0.990
72A	N	60A	N	CA	1.162
73A	I	61A	I	CA	0.811
74A	V	62A	I	CA	0.808
75A	L	63A	V	CA	0.613
76A	S	64A	T	CA	0.982
77A	R	65A	R	CA	1.398
78A	E	66A	N	CA	1.715
		67A	E		
79A	L	68A	G	CA	3.373
80A	K	69A	Y	CA	4.015
81A	E	70A	H	CA	3.673
82A	P				
83A	P	71A	V	CA	1.227
84A	R	72A	E	CA	1.495
85A	G	73A	G	CA	1.618
86A	A	74A	C	CA	0.732
87A	H				
88A	F	75A	E	CA	1.774
89A	L	76A	V	CA	1.018
90A	A	77A	A	CA	0.773
91A	K	78A	H	CA	0.633
92A	S	79A	S	CA	1.328
93A	L	80A	V	CA	1.793
94A	D	81A	E	CA	2.192
95A	D	82A	E	CA	1.677
96A	A	83A	V	CA	0.843
97A	L	84A	F	CA	1.380
98A	R	85A	E	CA	2.689
99A	L	86A	L	CA	2.675
100A	I	87A	C	CA	1.268
101A	E				

102A	Q	88A	K	CA	3.816
103A	P				
104A	D				
105A	L				
106A	A	89A	N	CA	3.023
107A	S				
108A	K				
109A	V	90A	E	CA	4.028
110A	D	91A	E	CA	3.614
111A	M	92A	E	CA	2.612
112A	V	93A	I	CA	1.391
113A	W	94A	F	CA	0.886
114A	I	95A	I	CA	0.910
115A	V	96A	F	CA	0.562
116A	G	97A	G	CA	1.074
117A	G	98A	G	CA	1.054
118A	S	99A	A	CA	0.892
119A	S	100A	Q	CA	0.601
120A	V	101A	I	CA	0.581
121A	Y	102A	Y	CA	0.982
122A	Q	103A	D	CA	1.442
123A	E	104A	L	CA	1.481
124A	A	105A	F	CA	1.286
125A	M	106A	L	CA	1.606
126A	N				
127A	Q	107A	P	CA	1.513
128A	P				
129A	G	108A	Y	CA	4.731
130A	H	109A	V	CA	4.928
131A	L	110A	D	CA	1.642
132A	R	111A	K	CA	0.968
133A	L	112A	L	CA	0.983
134A	F	113A	Y	CA	0.369
135A	V	114A	I	CA	0.276
136A	T	115A	T	CA	0.409
137A	R	116A	K	CA	0.517
138A	I	117A	I	CA	0.445
139A	M	118A	H	CA	1.127
140A	Q	119A	H	CA	1.328
141A	E	120A	A	CA	1.187
142A	F	121A	F	CA	1.326
143A	E	122A	E	CA	1.613
144A	S	123A	G	CA	2.113
145A	D	124A	D	CA	0.486
146A	T	125A	T	CA	0.814
147A	F	126A	F	CA	0.640
148A	F	127A	F	CA	0.408
149A	P	128A	P	CA	1.237
150A	E	129A	E	CA	1.339
151A	I	130A	M	CA	3.000
152A	D	131A	D	CA	1.158
153A	L	132A	M	CA	1.798
154A	G	133A	T	CA	1.384

Appendix part III

155A	K	134A	N	CA	2.798
156A	Y	135A	W	CA	2.060
157A	K	136A	K	CA	1.675
158A	L	137A	E	CA	1.800
159A	L	138A	V	CA	1.695
160A	P				
161A	E	139A	F	CA	2.574
162A	Y				
163A	P				
164A	G				
165A	V				
166A	L				
167A	S	140A	V	CA	3.450
168A	E	141A	E	CA	3.459
169A	V	142A	K	CA	2.391
170A	Q	143A	G	CA	2.382
		144A	L		
171A	E	145A	T	CA	2.139
172A	E	146A	D	CA	3.644
		147A	E		
173A	K	148A	K	CA	3.972
		149A	N		
174A	G	150A	P	CA	2.764
175A	I	151A	Y	CA	0.954
176A	K	152A	T	CA	0.970
177A	Y	153A	Y	CA	0.489
178A	K	154A	Y	CA	0.873
179A	F	155A	Y	CA	0.443
180A	E	156A	H	CA	0.452
181A	V	157A	V	CA	0.470
182A	Y	158A	Y	CA	1.375
183A	E	159A	E	CA	1.493
184A	K	160A	K	CA	1.490
185A	K	161A	Q	CA	2.660
186A	D	162A	Q	CA	4.933

Appendix part III

Table 08. Residues used for superposition between 3K45 and 2ZZA

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
1A	V				
2A	R	1A	V	CA	0.574
3A	P	2A	I	CA	0.517
4A	L	3A	V	CA	0.991
5A	N	4A	S	CA	1.286
6A	C	5A	M	CA	0.564
7A	I	6A	I	CA	0.513
8A	V	7A	A	CA	0.135
9A	A	8A	A	CA	0.152
10A	V	9A	L	CA	0.219
11A	S	10A	A	CA	0.618
12A	Q	11A	N	CA	1.417
13A	N	12A	N	CA	1.414
14A	M	13A	R	CA	0.918
15A	G	14A	V	CA	0.424
16A	I	15A	I	CA	0.616
17A	G	16A	G	CA	0.848
18A	K	17A	L	CA	0.836
19A	N	18A	D	CA	1.222
20A	G	19A	N	CA	1.016
21A	D	20A	K	CA	0.707
22A	L	21A	M	CA	0.974
23A	P	22A	P	CA	1.659
24A	W	23A	W	CA	1.702
25A	P				
26A	P	24A	H	CA	1.360
27A	L	25A	L	CA	0.587
28A	R	26A	P	CA	0.191
29A	N	27A	A	CA	0.213
30A	E	28A	E	CA	0.136
31A	F	29A	L	CA	0.394
32A	K	30A	Q	CA	0.514
33A	Y	31A	L	CA	0.436
34A	F	32A	F	CA	0.397
35A	Q	33A	K	CA	0.554
36A	R	34A	R	CA	0.894
37A	M	35A	A	CA	0.996
38A	T	36A	T	CA	0.301
39A	T				
40A	T	37A	L	CA	4.099
41A	S	38A	G	CA	4.507
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				
48A	N	39A	K	CA	1.331

Appendix part III

49A	L	40A	P	CA	0.573
50A	V	41A	I	CA	0.524
51A	I	42A	V	CA	0.575
52A	M	43A	M	CA	0.466
53A	G	44A	G	CA	0.538
54A	R	45A	R	CA	0.515
55A	K	46A	N	CA	0.811
56A	T	47A	T	CA	0.641
57A	W	48A	F	CA	0.579
58A	F	49A	E	CA	0.950
59A	S	50A	S	CA	0.857
60A	I	51A	I	CA	0.996
61A	P	52A	G	CA	3.036
62A	E				
63A	K				
64A	N				
65A	R	53A	R	CA	2.463
66A	P	54A	P	CA	1.389
67A	L	55A	L	CA	0.606
68A	K	56A	P	CA	0.367
69A	D	57A	G	CA	0.681
70A	R	58A	R	CA	0.617
71A	I	59A	L	CA	0.641
72A	N	60A	N	CA	0.667
73A	I	61A	I	CA	0.566
74A	V	62A	V	CA	0.551
75A	L	63A	L	CA	0.350
76A	S	64A	S	CA	0.218
77A	R	65A	R	CA	0.439
78A	E	66A	Q	CA	0.865
		67A	T		
79A	L	68A	D	CA	3.843
80A	K	69A	Y	CA	4.314
81A	E	70A	Q	CA	3.547
82A	P				
83A	P	71A	P	CA	1.291
84A	R	72A	E	CA	0.916
85A	G	73A	G	CA	1.404
86A	A	74A	V	CA	0.731
87A	H				
88A	F	75A	T	CA	1.400
89A	L	76A	V	CA	0.980
90A	A	77A	V	CA	0.601
91A	K	78A	A	CA	0.380
92A	S	79A	T	CA	0.945
93A	L	80A	L	CA	0.916
94A	D	81A	E	CA	1.335
95A	D	82A	D	CA	1.401
96A	A	83A	A	CA	1.005
97A	L	84A	V	CA	0.970
98A	R	85A	V	CA	2.717
99A	L	86A	A	CA	3.095
100A	I	87A	A	CA	2.828

Appendix part III

101A	E				
102A	Q	88A	G	CA	5.152
103A	P				
104A	D				
105A	L				
106A	A	89A	D	CA	3.140
107A	S				
108A	K				
109A	V	90A	V	CA	4.024
110A	D	91A	E	CA	4.468
111A	M	92A	E	CA	2.934
112A	V	93A	L	CA	1.230
113A	W	94A	M	CA	0.654
114A	I	95A	I	CA	0.758
115A	V	96A	I	CA	0.716
116A	G	97A	G	CA	1.313
117A	G	98A	G	CA	0.580
118A	S	99A	A	CA	0.443
119A	S	100A	T	CA	0.245
120A	V	101A	I	CA	0.558
121A	Y	102A	Y	CA	0.600
122A	Q	103A	N	CA	0.706
123A	E	104A	Q	CA	0.963
124A	A	105A	C	CA	1.178
125A	M	106A	L	CA	0.782
126A	N	107A	A	CA	2.882
127A	Q				
128A	P	108A	A	CA	3.684
129A	G				
130A	H	109A	A	CA	5.546
131A	L	110A	D	CA	1.282
132A	R	111A	R	CA	0.572
133A	L	112A	L	CA	0.366
134A	F	113A	Y	CA	0.303
135A	V	114A	L	CA	0.336
136A	T	115A	T	CA	0.170
137A	R	116A	H	CA	0.319
138A	I	117A	I	CA	0.273
139A	M	118A	E	CA	1.167
140A	Q	119A	L	CA	1.691
141A	E	120A	T	CA	0.858
142A	F	121A	T	CA	1.121
143A	E	122A	E	CA	1.037
144A	S	123A	G	CA	1.017
145A	D	124A	D	CA	1.043
146A	T	125A	T	CA	1.343
147A	F	126A	W	CA	0.904
148A	F	127A	F	CA	0.686
149A	P	128A	P	CA	0.581
150A	E	129A	D	CA	0.642
151A	I	130A	Y	CA	1.629
		131A	E		
152A	D	132A	Q	CA	2.518

Appendix part III

153A	L				
154A	G	133A	Y	CA	4.330
155A	K	134A	N	CA	2.183
156A	Y	135A	W	CA	1.915
157A	K	136A	Q	CA	1.878
158A	L	137A	E	CA	2.272
159A	L	138A	I	CA	2.300
160A	P				
161A	E	139A	E	CA	2.440
162A	Y				
163A	P				
164A	G				
165A	V				
166A	L				
167A	S	140A	H	CA	3.423
168A	E	141A	E	CA	3.705
169A	V	142A	S	CA	2.154
170A	Q	143A	Y	CA	1.039
171A	E	144A	A	CA	3.026
172A	E	145A	A	CA	3.721
		146A	D		
		147A	D		
		148A	K		
173A	K	149A	N	CA	3.631
174A	G	150A	P	CA	2.899
175A	I	151A	H	CA	0.833
176A	K	152A	N	CA	0.552
177A	Y	153A	Y	CA	0.228
178A	K	154A	R	CA	0.746
179A	F	155A	F	CA	0.272
180A	E	156A	S	CA	0.244
181A	V	157A	L	CA	0.801
182A	Y	158A	L	CA	0.895
183A	E	159A	E	CA	1.048
184A	K	160A	R	CA	1.303
185A	K	161A	V	CA	5.317
186A	D				

Appendix part III

Appendix part III

b) Core identification (core regions):

Details of the quality of superposition between 3 K 45 and the other fixed molecules. As shown, all the local deviation between CA atoms of every matching residues in both structures is less than $2 \AA$ indicating quite good fit between the structures

Table 09.Residues used for superposition between 3K45 and 1U70

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
1A	V	1A	V	CA	0.597
2A	R	2A	R	CA	0.536
3A	P	3A	P	CA	0.457
4A	L	4A	L	CA	0.512
5A	N	5A	N	CA	0.159
6A	C	6A	C	CA	0.112
7A	I	7A	I	CA	0.130
8A	V	8A	V	CA	0.188
9A	A	9A	A	CA	0.257
10A	V	10A	V	CA	0.329
11A	S	11A	S	CA	0.111
12A	Q	12A	Q	CA	0.166
13A	N	13A	N	CA	0.061
14A	M	14A	M	CA	0.151
15A	G	15A	G	CA	0.332
16A	I	16A	I	CA	0.463
17A	G	17A	G	CA	1.343
18A	K	18A	K	CA	0.524
19A	N	19A	N	CA	0.564
20A	G	20A	G	CA	1.795
21A	D	21A	D	CA	0.981
22A	L	22A	R	CA	0.425
23A	P	23A	P	CA	0.662
24A	W	24A	W	CA	0.613
25A	P	25A	P	CA	0.744
26A	P	26A	P	CA	0.528
27A	L	27A	L	CA	0.363
28A	R	28A	R	CA	0.483
29A	N	29A	N	CA	0.175
30A	E	30A	E	CA	0.403
31A	F	31A	F	CA	0.377
32A	K	32A	K	CA	0.210
33A	Y	33A	Y	CA	0.255
34A	F	34A	F	CA	0.365
35A	Q	35A	Q	CA	0.326
36A	R	36A	R	CA	0.355
37A	M	37A	M	CA	0.457
38A	T	38A	T	CA	0.153
39A	T	39A	T	CA	0.274
40A	T	40A	T	CA	0.165
41A	S	41A	S	CA	0.170

42A	S	42A	S	CA	0.557
43A	V	43A	V	CA	0.303
44A	E	44A	E	CA	0.276
45A	G	45A	G	CA	0.261
46A	K	46A	K	CA	0.365
47A	Q	47A	Q	CA	0.271
48A	N	48A	N	CA	0.232
49A	L	49A	L	CA	0.171
50A	V	50A	V	CA	0.061
51A	I	51A	I	CA	0.136
52A	M	52A	M	CA	0.035
53A	G	53A	G	CA	0.137
54A	R	54A	R	CA	0.216
55A	K	55A	K	CA	0.210
56A	T	56A	T	CA	0.299
57A	W	57A	W	CA	0.162
58A	F	58A	F	CA	0.394
59A	S	59A	S	CA	0.476
60A	I	60A	I	CA	0.460
61A	P	61A	P	CA	0.457
62A	E	62A	E	CA	0.225
63A	K	63A	K	CA	0.450
64A	N	64A	N	CA	0.291
65A	R	65A	R	CA	0.233
66A	P	66A	P	CA	0.365
67A	L	67A	L	CA	0.423
68A	K	68A	K	CA	0.414
69A	D	69A	D	CA	0.354
70A	R	70A	R	CA	0.119
71A	I	71A	I	CA	0.154
72A	N	72A	N	CA	0.146
73A	I	73A	I	CA	0.091
74A	V	74A	V	CA	0.224
75A	L	75A	L	CA	0.238
76A	S	76A	S	CA	0.261
77A	R	77A	R	CA	0.449
78A	E	78A	E	CA	0.729
79A	L	79A	L	CA	0.337
80A	K	80A	K	CA	0.429
81A	E	81A	E	CA	0.804
82A	P	82A	P	CA	0.755
83A	P	83A	P	CA	0.666
84A	R	84A	R	CA	0.386
85A	G	85A	G	CA	0.156
86A	A	86A	A	CA	0.588
87A	H	87A	H	CA	0.238
88A	F	88A	F	CA	0.060
89A	L	89A	L	CA	0.194
90A	A	90A	A	CA	0.207
91A	K	91A	K	CA	0.251
92A	S	92A	S	CA	0.339
93A	L	93A	L	CA	0.063
94A	D	94A	D	CA	0.432

95A	D	95A	D	CA	0.558
96A	A	96A	A	CA	0.181
97A	L	97A	L	CA	0.344
98A	R	98A	R	CA	0.111
99A	L	99A	L	CA	0.222
100A	I	100A	I	CA	0.260
101A	E	101A	E	CA	0.270
102A	Q	102A	Q	CA	0.231
103A	P	103A	P	CA	0.138
104A	D	104A	E	CA	0.359
105A	L	105A	L	CA	0.765
106A	A	106A	A	CA	1.826
107A	S	107A	S	CA	1.763
108A	K	108A	K	CA	0.734
109A	V	109A	V	CA	0.319
110A	D	110A	D	CA	0.389
111A	M	111A	M	CA	0.100
112A	V	112A	V	CA	0.117
113A	W	113A	W	CA	0.031
114A	I	114A	I	CA	0.274
115A	V	115A	V	CA	0.284
116A	G	116A	G	CA	0.736
117A	G	117A	G	CA	1.555
118A	S	118A	S	CA	0.971
119A	S	119A	S	CA	0.975
120A	V	120A	V	CA	0.730
121A	Y	121A	Y	CA	0.481
122A	Q	122A	Q	CA	0.740
123A	E	123A	E	CA	0.694
124A	A	124A	A	CA	0.502
125A	M	125A	M	CA	0.875
126A	N	126A	N	CA	0.557
127A	Q	127A	Q	CA	1.454
128A	P	128A	P	CA	0.735
129A	G	129A	G	CA	0.761
130A	H	130A	H	CA	0.806
131A	L	131A	L	CA	0.542
132A	R	132A	R	CA	0.283
133A	L	133A	L	CA	0.315
134A	F	134A	F	CA	0.137
135A	V	135A	V	CA	0.189
136A	T	136A	T	CA	0.263
137A	R	137A	R	CA	0.309
138A	I	138A	I	CA	0.173
139A	M	139A	M	CA	0.121
140A	Q	140A	Q	CA	0.072
141A	E	141A	E	CA	0.185
142A	F	142A	F	CA	0.395
143A	E	143A	E	CA	0.619
144A	S	144A	S	CA	0.422
145A	D	145A	D	CA	0.556
146A	T	146A	T	CA	0.991
147A	F	147A	F	CA	0.792

Appendix part III

148A	F	148A	F	CA	0.353
149A	P	149A	P	CA	0.340
150A	E	150A	E	CA	0.618
151A	I	151A	I	CA	0.409
152A	D	152A	D	CA	0.434
153A	L	153A	L	CA	0.306
154A	G	154A	G	CA	0.226
155A	K	155A	K	CA	0.425
156A	Y	156A	Y	CA	0.692
157A	K	157A	K	CA	0.294
158A	L	158A	L	CA	0.514
159A	L	159A	L	CA	0.396
160A	P	160A	P	CA	0.218
161A	E	161A	E	CA	0.397
162A	Y	162A	Y	CA	0.360
163A	P	163A	P	CA	0.285
164A	G	164A	G	CA	0.333
165A	V	165A	V	CA	0.300
166A	L	166A	L	CA	0.172
167A	S	167A	S	CA	0.201
168A	E	168A	E	CA	0.035
169A	V	169A	V	CA	0.098
170A	Q	170A	Q	CA	0.228
171A	E	171A	E	CA	0.242
172A	E	172A	E	CA	0.363
173A	K	173A	K	CA	0.333
174A	G	174A	G	CA	0.184
175A	I	175A	I	CA	0.193
176A	K	176A	K	CA	0.186
177A	Y	177A	Y	CA	0.263
178A	K	178A	K	CA	0.148
179A	F	179A	F	CA	0.141
180A	E	180A	E	CA	0.123
181A	V	181A	V	CA	0.205
182A	Y	182A	Y	CA	0.179
183A	E	183A	E	CA	0.238
184A	K	184A	K	CA	0.466
185A	K	185A	K	CA	0.630

Appendix part III

Table 10. Residues used for superposition between 3K45 and 1DR1

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
3A	P	3A	S	CA	0.844
4A	L	4A	L	CA	0.792
5A	N	5A	N	CA	0.568
6A	C	6A	S	CA	0.640
7A	I	7A	I	CA	0.263
8A	V	8A	V	CA	0.186
9A	A	9A	A	CA	0.263
10A	V	10A	V	CA	0.420
11A	S	11A	C	CA	0.309
12A	Q	12A	Q	CA	0.874
13A	N	13A	N	CA	1.066
14A	M	14A	M	CA	0.863
15A	G	15A	G	CA	0.905
16A	I	16A	I	CA	0.759
17A	G	17A	G	CA	1.181
18A	K	18A	K	CA	1.196
19A	N	19A	D	CA	1.529
20A	G	20A	G	CA	1.540
21A	D	21A	N	CA	1.114
22A	L	22A	L	CA	0.814
23A	P	23A	P	CA	0.868
24A	W	24A	W	CA	0.790
25A	P	25A	P	CA	0.798
26A	P	26A	P	CA	1.058
27A	L	27A	L	CA	0.921
28A	R	28A	R	CA	1.313
29A	N	29A	N	CA	0.817
30A	E	30A	E	CA	0.489
31A	F	31A	Y	CA	0.437
32A	K	32A	K	CA	0.122
33A	Y	33A	Y	CA	0.161
34A	F	34A	F	CA	0.153
35A	Q	35A	Q	CA	0.155
36A	R	36A	R	CA	0.175
37A	M	37A	M	CA	0.164
38A	T	38A	T	CA	0.098
39A	T	39A	S	CA	0.178
40A	T	40A	T	CA	0.215
41A	S	41A	S	CA	0.217
42A	S	42A	H	CA	0.788
43A	V	43A	V	CA	0.536
44A	E	44A	E	CA	0.884
45A	G	45A	G	CA	0.624
46A	K	46A	K	CA	0.279
47A	Q	47A	Q	CA	0.145
48A	N	48A	N	CA	0.385
49A	L	49A	A	CA	0.424
50A	V	50A	V	CA	0.125
51A	I	51A	I	CA	0.190

Appendix part III

52A	M	52A	M	CA	0.237
53A	G	53A	G	CA	0.229
54A	R	54A	K	CA	0.569
55A	K	55A	K	CA	0.594
56A	T	56A	T	CA	0.342
57A	W	57A	W	CA	0.188
58A	F	58A	F	CA	0.543
59A	S	59A	S	CA	0.498
60A	I	60A	I	CA	0.432
61A	P	61A	P	CA	0.687
62A	E	62A	E	CA	0.803
63A	K	63A	K	CA	1.365
64A	N	64A	N	CA	1.009
65A	R	65A	R	CA	0.490
66A	P	66A	P	CA	0.252
67A	L	67A	L	CA	0.346
68A	K	68A	K	CA	0.150
69A	D	69A	D	CA	0.346
70A	R	70A	R	CA	0.280
71A	I	71A	I	CA	0.428
72A	N	72A	N	CA	0.429
73A	I	73A	I	CA	0.358
74A	V	74A	V	CA	0.447
75A	L	75A	L	CA	0.370
76A	S	76A	S	CA	0.635
77A	R	77A	R	CA	0.848
78A	E	78A	E	CA	0.982
79A	L	79A	L	CA	0.881
80A	K	80A	K	CA	0.640
81A	E	81A	E	CA	0.664
82A	P	82A	A	CA	0.574
83A	P	83A	P	CA	0.698
84A	R	84A	K	CA	0.732
85A	G	85A	G	CA	0.795
86A	A	86A	A	CA	0.548
87A	H	87A	H	CA	0.550
88A	F	88A	Y	CA	0.488
89A	L	89A	L	CA	0.472
90A	A	90A	S	CA	0.303
91A	K	91A	K	CA	0.776
92A	S	92A	S	CA	0.790
93A	L	93A	L	CA	0.726
94A	D	94A	D	CA	0.467
95A	D	95A	D	CA	0.292
96A	A	96A	A	CA	0.230
97A	L	97A	L	CA	0.482
98A	R	98A	A	CA	0.606
99A	L	99A	L	CA	0.549
100A	I	100A	L	CA	0.373
101A	E	101A	D	CA	0.853
102A	Q	102A	S	CA	1.257
104A	D	104A	E	CA	1.674
105A	L	105A	L	CA	1.366

107A	S	107A	S	CA	1.970
108A	K	108A	K	CA	0.459
109A	V	109A	V	CA	0.111
110A	D	110A	D	CA	0.271
111A	M	111A	M	CA	0.289
112A	V	112A	V	CA	0.221
113A	W	113A	W	CA	0.237
114A	I	114A	I	CA	0.453
115A	V	115A	V	CA	0.446
116A	G	116A	G	CA	1.128
117A	G	117A	G	CA	0.884
118A	S	118A	T	CA	1.305
119A	S	119A	A	CA	1.523
120A	V	120A	V	CA	0.813
121A	Y	121A	Y	CA	0.835
122A	Q	122A	K	CA	1.392
123A	E	123A	A	CA	1.232
124A	A	124A	A	CA	1.172
125A	M	125A	M	CA	1.405
126A	N	126A	E	CA	1.746
127A	Q	127A	K	CA	1.230
128A	P	128A	P	CA	1.191
129A	G	129A	I	CA	1.288
130A	H	130A	N	CA	0.880
131A	L	131A	H	CA	1.381
132A	R	132A	R	CA	1.163
133A	L	133A	L	CA	0.724
134A	F	134A	F	CA	0.423
135A	V	135A	V	CA	0.239
136A	T	136A	T	CA	0.226
137A	R	137A	R	CA	0.347
138A	I	138A	I	CA	0.426
139A	M	139A	L	CA	0.601
140A	Q	140A	H	CA	0.593
141A	E	141A	E	CA	0.950
142A	F	142A	F	CA	1.077
143A	E	143A	E	CA	1.016
144A	S	144A	S	CA	1.161
145A	D	145A	D	CA	0.867
146A	T	146A	T	CA	1.616
147A	F	147A	F	CA	1.158
148A	F	148A	F	CA	0.760
149A	P	149A	P	CA	1.082
150A	E	150A	E	CA	1.325
151A	I	151A	I	CA	1.901
153A	L	153A	Y	CA	1.534
154A	G	154A	K	CA	1.056
155A	K	155A	D	CA	1.076
156A	Y	156A	F	CA	0.562
157A	K	157A	K	CA	0.706
158A	L	158A	L	CA	0.450
159A	L	159A	L	CA	0.829
160A	P	160A	T	CA	1.159

Appendix part III

161A	E	161A	E	CA	1.221
162A	Y	162A	Y	CA	1.271
163A	P	163A	P	CA	1.421
164A	G	164A	G	CA	1.572
165A	V	165A	V	CA	1.189
166A	L	166A	P	CA	1.215
167A	S	167A	A	CA	1.261
168A	E	168A	D	CA	1.415
169A	V	169A	I	CA	0.990
170A	Q	170A	Q	CA	0.866
171A	E	171A	E	CA	0.842
172A	E	172A	E	CA	1.038
173A	K	173A	D	CA	0.566
174A	G	174A	G	CA	0.536
175A	I	175A	I	CA	0.777
176A	K	176A	Q	CA	0.484
177A	Y	177A	Y	CA	0.582
178A	K	178A	K	CA	1.026
179A	F	179A	F	CA	0.716
180A	E	180A	E	CA	0.628
181A	V	181A	V	CA	0.460
182A	Y	182A	Y	CA	0.289
183A	E	183A	Q	CA	0.611
184A	K	184A	K	CA	0.564
185A	K	185A	S	CA	1.014
186A	D	186A	V	CA	1.438

Appendix part III

Table 11. Residues used for superposition between 3K45 and 4H95

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
1A	V				
4A	L	6A	V	CA	1.159
5A	N	7A	A	CA	0.702
6A	C	8A	I	CA	0.368
7A	I	9A	I	CA	0.262
8A	V	10A	V	CA	0.213
9A	A	11A	A	CA	0.307
10A	V	12A	A	CA	0.273
11A	S	13A	L	CA	0.597
12A	Q	14A	K	CA	1.557
		15A	P		
14A	M	17A	L	CA	0.961
15A	G	18A	G	CA	0.299
16A	I	19A	I	CA	0.583
17A	G	20A	G	CA	1.277
18A	K	21A	Y	CA	0.972
19A	N	22A	K	CA	1.078
20A	G	23A	G	CA	1.138
21A	D	24A	K	CA	0.942
22A	L	25A	M	CA	0.565
23A	P	26A	P	CA	1.925
25A	P				
26A	P	28A	R	CA	0.988
27A	L	29A	L	CA	0.791
28A	R	30A	R	CA	1.353
29A	N	31A	K	CA	0.909
30A	E	32A	E	CA	0.696
31A	F	33A	I	CA	0.393
32A	K	34A	R	CA	0.457
33A	Y	35A	Y	CA	0.544
34A	F	36A	F	CA	0.462
35A	Q	37A	K	CA	0.415
36A	R	38A	D	CA	0.704
37A	M	39A	V	CA	0.634
38A	T	40A	T	CA	0.467
39A	T	41A	T	CA	0.709
40A	T	42A	R	CA	0.677
41A	S	43A	T	CA	1.165
42A	S	44A	T	CA	1.405
43A	V	45A	K	CA	1.622
46A	K	48A	T	CA	0.970
47A	Q	49A	R	CA	0.729
48A	N	50A	N	CA	0.550
49A	L	51A	A	CA	0.526
50A	V	52A	V	CA	0.331
51A	I	53A	I	CA	0.357
52A	M	54A	M	CA	0.255
53A	G	55A	G	CA	0.273
54A	R	56A	R	CA	0.294

55A	K	57A	K	CA	0.392
56A	T	58A	T	CA	0.414
57A	W	59A	W	CA	0.432
58A	F	60A	E	CA	0.572
59A	S	61A	S	CA	0.456
60A	I	62A	I	CA	0.469
61A	P	63A	P	CA	0.209
62A	E	64A	Q	CA	0.817
63A	K	65A	K	CA	0.680
64A	N	66A	F	CA	0.306
65A	R	67A	R	CA	0.519
66A	P	68A	P	CA	0.572
67A	L	69A	L	CA	0.707
68A	K	70A	P	CA	0.867
69A	D	71A	D	CA	0.315
70A	R	72A	R	CA	0.354
71A	I	73A	L	CA	0.469
72A	N	74A	N	CA	0.450
73A	I	75A	I	CA	0.534
74A	V	76A	I	CA	0.326
75A	L	77A	L	CA	0.325
76A	S	78A	S	CA	0.938
77A	R	79A	R	CA	1.874
		83A	N		
87A	H	90A	I	CA	1.180
88A	F	91A	I	CA	0.369
89A	L	92A	H	CA	0.119
90A	A	93A	A	CA	0.067
91A	K	94A	S	CA	1.437
95A	D	98A	S	CA	1.493
96A	A	99A	S	CA	1.697
101A	E				
102A	Q				
103A	P				
104A	D				
105A	L				
108A	K				
109A	V	106A	V	CA	1.363
110A	D	107A	E	CA	1.005
111A	M	108A	R	CA	0.706
112A	V	109A	V	CA	0.607
113A	W	110A	F	CA	0.495
114A	I	111A	I	CA	0.484
115A	V	112A	I	CA	0.355
116A	G	113A	G	CA	0.349
117A	G	114A	G	CA	0.420
118A	S	115A	A	CA	0.932
119A	S	116A	E	CA	1.079
120A	V	117A	I	CA	0.971
121A	Y	118A	Y	CA	1.138
122A	Q	119A	N	CA	1.786
124A	A	121A	L	CA	1.391
125A	M	122A	I	CA	1.129

Appendix part III

126A	N	123A	N	CA	1.760
127A	Q	124A	N	CA	1.109
128A	P	125A	S	CA	1.762
131A	L	128A	S	CA	1.301
132A	R	129A	H	CA	0.552
133A	L	130A	L	CA	0.517
134A	F	131A	L	CA	0.321
135A	V	132A	I	CA	0.276
136A	T	133A	T	CA	0.451
137A	R	134A	E	CA	0.692
138A	I	135A	I	CA	0.943
139A	M	136A	E	CA	0.459
		138A	P		
		139A	S		
		140A	P		
		142A	S		
144A	S	145A	M	CA	1.399
145A	D	146A	D	CA	1.390
146A	T	147A	T	CA	0.746
147A	F	148A	F	CA	0.642
148A	F	149A	L	CA	0.986
149A	P	150A	K	CA	1.511
154A	G				
156A	Y	156A	W	CA	1.104
157A	K	157A	T	CA	1.154
158A	L	158A	K	CA	0.491
159A	L	159A	Q	CA	0.493
160A	P	160A	P	CA	0.746
161A	E	161A	K	CA	1.788
		162A	S		
		163A	E		
162A	Y	164A	L	CA	1.444
163A	P	165A	Q	CA	1.911
		166A	K		
		167A	F		
		168A	V		
		169A	G		
		171A	T		
		172A	V		
167A	S				
168A	E	175A	D	CA	1.261
169A	V	176A	D	CA	1.003
170A	Q	177A	I	CA	0.725
171A	E	178A	K	CA	1.039
172A	E	179A	E	CA	1.419
175A	I	182A	F	CA	1.481
176A	K	183A	T	CA	0.750
177A	Y	184A	Y	CA	0.663
178A	K	185A	N	CA	0.665
179A	F	186A	Y	CA	0.631
180A	E	187A	T	CA	0.697
181A	V	188A	L	CA	0.626
182A	Y	189A	W	CA	0.409

Appendix part III

$183 A$	\mathbf{E}	$190 A$	T	CA	0.912
$184 A$	K	$191 A$	\mathbf{R}	CA	1.588
$186 A$	\mathbf{D}				

Appendix part III

Table 12. Residues used for superposition between 3K45 and 4GH8

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (\AA
1A	V				
2A	R				
3A	P	1A	M	CA	0.684
4A	L	2A	I	CA	0.533
5A	N	3A	S	CA	0.947
6A	C	4A	L	CA	0.422
7A	I	5A	I	CA	0.190
8A	V	6A	A	CA	0.162
9A	A	7A	A	CA	0.398
10A	V	8A	L	CA	0.218
11A	S	9A	A	CA	1.070
12A	Q	10A	V	CA	1.739
13A	N	11A	D	CA	1.022
14A	M	12A	R	CA	0.843
15A	G	13A	V	CA	0.374
16A	I	14A	I	CA	0.395
17A	G	15A	G	CA	0.315
18A	K	16A	M	CA	0.826
19A	N	17A	E	CA	1.246
20A	G	18A	N	CA	0.847
21A	D	19A	A	CA	0.284
22A	L	20A	M	CA	0.372
23A	P	21A	P	CA	1.485
24A	W	22A	W	CA	0.902
25A	P	23A	P	CA	0.984
26A	P	24A	P	CA	0.905
27A	L	25A	L	CA	0.694
28A	R	26A	P	CA	1.221
29A	N	27A	A	CA	1.389
30A	E	28A	D	CA	0.855
31A	F	29A	L	CA	0.619
32A	K	30A	A	CA	0.877
33A	Y	31A	W	CA	0.816
34A	F	32A	F	CA	0.337
35A	Q	33A	K	CA	0.843
36A	R	34A	R	CA	1.055
37A	M	35A	N	CA	0.935
38A	T	36A	T	CA	0.474
39A	T				
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				
48A	N	39A	K	CA	1.020
49A	L	40A	P	CA	0.560
50A	V	41A	V	CA	0.421
51A	I	42A	I	CA	0.381

52A	M	43A	M	CA	0.182
53A	G	44A	G	CA	0.222
54A	R	45A	R	CA	0.381
55A	K	46A	H	CA	0.622
56A	T	47A	T	CA	0.437
57A	W	48A	W	CA	0.278
58A	F	49A	E	CA	1.008
59A	S	50A	S	CA	0.776
60A	I	51A	I	CA	0.665
61A	P	52A	P	CA	0.984
62A	E	53A	E	CA	1.482
64A	N	55A	N	CA	1.259
65A	R	56A	R	CA	0.745
66A	P	57A	P	CA	0.602
67A	L	58A	L	CA	0.325
68A	K	59A	P	CA	0.425
69A	D	60A	G	CA	0.652
70A	R	61A	R	CA	0.404
71A	I	62A	K	CA	0.504
72A	N	63A	N	CA	0.425
73A	I	64A	I	CA	0.315
74A	V	65A	I	CA	0.298
75A	L	66A	L	CA	0.303
76A	S	67A	S	CA	0.431
77A	R	68A	S	CA	0.360
78A	E	69A	Q	CA	1.410
79A	L				
80A	K	70A	P	CA	1.456
81A	E				
		74A	D		
86A	A	76A	V	CA	1.094
87A	H				
88A	F	77A	T	CA	1.286
89A	L	78A	W	CA	1.056
90A	A	79A	V	CA	0.873
91A	K	80A	K	CA	0.512
92A	S	81A	S	CA	0.901
93A	L	82A	V	CA	1.208
94A	D	83A	D	CA	1.324
95A	D	84A	E	CA	1.274
96A	A	85A	A	CA	1.306
97A	L	86A	I	CA	0.922
102A	Q				
103A	P				
104A	D				
105A	L				
107A	S				
108A	K				
112A	V	95A	I	CA	1.188
113A	W	96A	M	CA	0.470
114A	I	97A	V	CA	0.398
115A	V	98A	I	CA	0.329
116A	G	99A	G	CA	0.610

117A	G	100A	G	CA	0.456
118A	S	101A	G	CA	0.427
119A	S	102A	R	CA	0.411
120A	V	103A	V	CA	0.371
121A	Y	104A	Y	CA	0.335
122A	Q	105A	E	CA	0.249
123A	E	106A	Q	CA	0.173
124A	A	107A	F	CA	0.154
125A	M	108A	L	CA	0.949
127A	Q				
128A	P				
131A	L	112A	Q	CA	1.794
132A	R	113A	K	CA	0.819
133A	L	114A	L	CA	0.706
134A	F	115A	Y	CA	0.290
135A	V	116A	L	CA	0.614
136A	T	117A	T	CA	0.503
137A	R	118A	H	CA	0.698
138A	I	119A	I	CA	0.808
141A	E	122A	E	CA	1.457
142A	F	123A	V	CA	1.505
143A	E	124A	E	CA	1.189
144A	S	125A	G	CA	0.995
145A	D	126A	D	CA	0.989
146A	T	127A	T	CA	0.936
147A	F	128A	H	CA	0.620
148A	F	129A	F	CA	0.592
149A	P	130A	P	CA	0.715
150A	E	131A	D	CA	1.077
151A	I	132A	Y	CA	1.459
152A	D	133A	E	CA	0.284
153A	L	134A	P	CA	0.505
154A	G	135A	D	CA	0.792
155A	K	136A	D	CA	0.778
156A	Y	137A	W	CA	1.106
157A	K	138A	E	CA	1.378
158A	L	139A	S	CA	1.250
159A	L	140A	V	CA	1.167
160A	P				
162A	Y				
163A	P				
164A	G				
165A	V				
166A	L				
169A	V	144A	F	CA	1.348
170A	Q	145A	H	CA	1.192
		148A	D		
		149A	A		
		150A	Q		
		151A	N		
173A	K	152A	S	CA	1.503
174A	G				
175A	I	153A	H	CA	0.884

Appendix part III

176A	K	154A	S	CA	0.851
177A	Y	155A	Y	CA	0.596
178A	K	156A	C	CA	0.718
179A	F	157A	F	CA	0.571
180A	E	158A	E	CA	0.569
181A	V	159A	I	CA	0.727
182A	Y	160A	L	CA	1.058
183A	E	161A	E	CA	1.273
184A	K	162A	R	CA	1.614
185A	K				
186A	D				

Appendix part III

Table 13. Residues used for superposition between 3K45 and 1ZDR

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (Å)
1A	V				
2A	R				
3A	P	1A	M	CA	1.446
4A	L	2A	I	CA	0.991
5A	N	3A	S	CA	0.760
6A	C	4A	H	CA	0.363
7A	I	5A	I	CA	0.188
8A	V	6A	V	CA	0.154
9A	A	7A	A	CA	0.274
10A	V	8A	M	CA	0.554
11A	S	9A	D	CA	0.410
12A	Q	10A	E	CA	0.428
13A	N	11A	N	CA	0.817
14A	M	12A	R	CA	0.830
15A	G	13A	V	CA	0.384
16A	I	14A	I	CA	0.371
17A	G	15A	G	CA	0.792
18A	K	16A	K	CA	0.394
19A	N	17A	D	CA	0.569
20A	G	18A	N	CA	0.671
21A	D	19A	R	CA	0.810
22A	L	20A	L	CA	1.065
24A	W	22A	W	CA	1.471
25A	P				
26A	P	23A	H	CA	1.968
27A	L	24A	L	CA	1.276
28A	R	25A	P	CA	1.484
29A	N	26A	A	CA	1.526
30A	E	27A	D	CA	0.796
31A	F	28A	L	CA	0.263
32A	K	29A	A	CA	0.416
33A	Y	30A	Y	CA	0.052
34A	F	31A	F	CA	0.141
35A	Q	32A	K	CA	0.338
36A	R	33A	R	CA	0.465
37A	M	34A	V	CA	0.509
38A	T	35A	T	CA	0.771
39A	T	36A	M	CA	0.973
41A	S				
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				
48A	N	38A	H	CA	1.340
49A	L	39A	A	CA	0.705
50A	V	40A	I	CA	0.796
51A	I	41A	V	CA	0.574

Appendix part III

52A	M	42A	M	CA	0.349
53A	G	43A	G	CA	0.380
54A	R	44A	R	CA	0.707
55A	K	45A	K	CA	0.714
56A	T	46A	T	CA	0.236
57A	W	47A	F	CA	0.467
58A	F	48A	E	CA	1.041
59A	S	49A	A	CA	0.458
60A	I	50A	I	CA	0.804
61A	P				
63A	K				
64A	N				
66A	P	53A	P	CA	1.364
67A	L	54A	L	CA	1.256
68A	K	55A	P	CA	1.234
69A	D	56A	G	CA	1.284
70A	R	57A	R	CA	1.415
71A	I	58A	D	CA	0.890
72A	N	59A	N	CA	0.804
73A	I	60A	V	CA	0.730
74A	V	61A	V	CA	0.435
75A	L	62A	V	CA	0.727
76A	S	63A	T	CA	0.557
77A	R	64A	G	CA	1.083
78A	E	65A	N	CA	1.897
83A	P	70A	P	CA	1.266
84A	R	71A	E	CA	1.973
86A	A	73A	C	CA	1.420
87A	H				
88A	F	74A	L	CA	0.742
89A	L	75A	V	CA	0.556
90A	A	76A	L	CA	0.424
91A	K	77A	H	CA	1.213
95A	D	81A	E	CA	1.817
98A	R	84A	Q	CA	1.373
99A	L	85A	W	CA	1.891
103A	P				
104A	D				
107A	S				
108A	K				
109A	V				
111A	M	92A	E	CA	1.644
112A	V	93A	V	CA	0.467
113A	W	94A	F	CA	0.506
114A	I	95A	I	CA	0.386
115A	V	96A	I	CA	0.495
116A	G	97A	G	CA	0.293
117A	G	98A	G	CA	1.242
118A	S	99A	A	CA	0.698
119A	S	100A	E	CA	0.520
120A	V	101A	L	CA	0.714
121A	Y	102A	F	CA	0.531
122A	Q	103A	R	CA	0.503

Appendix part III

123A	E	104A	A	CA	0.754
124A	A	105A	T	CA	1.066
125A	M	106A	M	CA	0.924
127A	Q				
128A	P				
131A	L	110A	D	CA	1.254
132A	R	111A	R	CA	0.414
133A	L	112A	L	CA	0.494
134A	F	113A	Y	CA	0.175
135A	V	114A	V	CA	0.135
136A	T	115A	T	CA	0.144
137A	R	116A	K	CA	0.340
138A	I	117A	I	CA	0.520
139A	M	118A	F	CA	0.551
140A	Q	119A	A	CA	0.295
141A	E	120A	S	CA	0.440
142A	F	121A	F	CA	0.593
143A	E	122A	P	CA	0.942
144A	S	123A	G	CA	0.318
145A	D	124A	D	CA	0.141
146A	T	125A	T	CA	0.799
147A	F	126A	F	CA	0.731
148A	F	127A	Y	CA	0.599
149A	P	128A	P	CA	0.210
150A	E	129A	P	CA	0.330
151A	I	130A	I	CA	0.501
152A	D	131A	S	CA	0.430
153A	L	132A	D	CA	0.948
154A	G	133A	D	CA	0.808
155A	K	134A	E	CA	0.023
156A	Y	135A	W	CA	0.477
157A	K	136A	E	CA	1.138
158A	L	137A	I	CA	0.873
159A	L	138A	V	CA	0.833
160A	P				
162A	Y				
163A	P				
164A	G				
167A	S				
171A	E	145A	K	CA	1.427
		147A	E		
		148A	K		
175A	I	151A	Y	CA	1.121
176A	K	152A	E	CA	1.290
177A	Y	153A	H	CA	0.774
178A	K	154A	A	CA	0.590
179A	F	155A	F	CA	0.320
180A	E	156A	I	CA	0.226
181A	V	157A	I	CA	0.316
182A	Y	158A	Y	CA	0.443
183A	E	159A	E	CA	0.780
184A	K	160A	R	CA	1.737
186A	D				

Appendix part III

Table 14. Residues used for superposition between 3K45 and 3JW3

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (丸)
		-2A	H		
		-1A	H		
		0A	H		
2A	R				
3A	P	2A	R	CA	1.056
4A	L	3A	V	CA	0.262
5A	N	4A	S	CA	0.675
6A	C	5A	F	CA	0.699
7A	I	6A	M	CA	0.228
8A	V	7A	V	CA	0.445
9A	A	8A	A	CA	0.164
10A	V	9A	M	CA	0.463
11A	S	10A	D	CA	0.173
12A	Q	11A	E	CA	0.316
13A	N	12A	N	CA	0.832
14A	M	13A	R	CA	0.750
15A	G	14A	V	CA	0.449
16A	I	15A	I	CA	0.430
17A	G	16A	G	CA	0.737
18A	K	17A	K	CA	0.594
19A	N	18A	D	CA	0.627
20A	G	19A	N	CA	0.691
21A	D	20A	N	CA	0.636
22A	L	21A	L	CA	1.094
23A	P	22A	P	CA	1.815
24A	W	23A	W	CA	1.753
25A	P				
26A	P	24A	R	CA	1.245
27A	L	25A	L	CA	0.129
28A	R	26A	P	CA	0.412
29A	N	27A	S	CA	0.464
30A	E	28A	E	CA	0.447
31A	F	29A	L	CA	0.511
32A	K	30A	Q	CA	0.463
33A	Y	31A	Y	CA	0.187
34A	F	32A	V	CA	0.441
35A	Q	33A	K	CA	0.441
36A	R	34A	K	CA	0.345
37A	M	35A	T	CA	0.425
38A	T	36A	T	CA	0.796
39A	T				
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				
48A	N	39A	H	CA	1.230
49A	L	40A	P	CA	0.811

Appendix part III

50A	V	41A	L	CA	0.800
51A	I	42A	I	CA	0.842
52A	M	43A	M	CA	0.629
53A	G	44A	G	CA	0.592
54A	R	45A	R	CA	0.540
55A	K	46A	K	CA	0.893
56A	T	47A	N	CA	0.949
57A	W	48A	Y	CA	0.934
58A	F	49A	E	CA	1.052
59A	S	50A	A	CA	1.036
60A	I	51A	I	CA	1.177
61A	P				
63A	K				
64A	N				
66A	P	54A	P	CA	1.396
67A	L	55A	L	CA	1.318
68A	K	56A	P	CA	0.968
69A	D	57A	G	CA	0.334
70A	R	58A	R	CA	0.569
71A	I	59A	R	CA	0.776
72A	N	60A	N	CA	0.888
73A	I	61A	I	CA	0.902
74A	V	62A	I	CA	0.709
75A	L	63A	V	CA	0.642
76A	S	64A	T	CA	0.866
77A	R	65A	R	CA	0.591
78A	E	66A	N	CA	1.020
		67A	E		
82A	P				
83A	P	71A	V	CA	1.359
84A	R	72A	E	CA	1.980
86A	A	74A	C	CA	0.739
87A	H				
88A	F	75A	E	CA	1.397
89A	L	76A	V	CA	0.739
90A	A	77A	A	CA	0.705
91A	K	78A	H	CA	0.705
92A	S	79A	S	CA	0.770
93A	L	80A	V	CA	1.674
94A	D	81A	E	CA	1.627
95A	D	82A	E	CA	0.979
96A	A	83A	V	CA	0.730
97A	L	84A	F	CA	0.959
100A	I	87A	C	CA	1.126
101A	E				
103A	P				
104A	D				
105A	L				
107A	S				
108A	K				
112A	V	93A	I	CA	0.815
113A	W	94A	F	CA	0.678
114A	I	95A	I	CA	0.700

Appendix part III

115A	V	96A	I	CA	0.818
116A	G	97A	G	CA	0.939
117A	G	98A	G	CA	0.717
118A	S	99A	A	CA	0.739
119A	S	100A	Q	CA	0.624
120A	V	101A	I	CA	0.723
121A	Y	102A	Y	CA	0.857
122A	Q	103A	D	CA	1.020
123A	E	104A	L	CA	1.171
124A	A	105A	F	CA	0.950
125A	M	106A	L	CA	0.822
127A	Q				
128A	P				
131A	L	110A	D	CA	1.419
132A	R	111A	K	CA	0.784
133A	L	112A	L	CA	1.061
134A	F	113A	Y	CA	0.257
135A	V	114A	I	CA	0.218
136A	T	115A	T	CA	0.241
137A	R	116A	K	CA	0.391
138A	I	117A	I	CA	0.590
139A	M	118A	H	CA	1.051
140A	Q	119A	H	CA	1.054
141A	E	120A	A	CA	0.726
142A	F	121A	F	CA	0.540
143A	E	122A	E	CA	0.794
144A	S	123A	G	CA	1.006
145A	D	124A	D	CA	0.135
146A	T	125A	T	CA	1.049
147A	F	126A	F	CA	0.802
148A	F	127A	F	CA	0.492
149A	P	128A	P	CA	0.853
150A	E	129A	E	CA	1.117
154A	G	133A	T	CA	0.931
157A	K	136A	K	CA	1.835
158A	L	137A	E	CA	1.539
159A	L	138A	V	CA	1.597
160A	P				
162A	Y				
163A	P				
164A	G				
165A	V				
166A	L				
169A	V	142A	K	CA	1.992
		144A	L		
171A	E	145A	T	CA	1.766
		147A	E		
		148A	K		
		149A	N		
173A	K	150A	P	CA	1.542
174A	G				
175A	I	151A	Y	CA	0.410
176A	K	152A	T	CA	0.338

Appendix part III

177A	Y	153A	Y	CA	0.338
178A	K	154A	Y	CA	0.515
179A	F	155A	Y	CA	0.534
180A	E	156A	H	CA	0.601
181A	V	157A	V	CA	0.755
182A	Y	158A	Y	CA	1.247
183A	E	159A	E	CA	1.764
184A	K	160A	K	CA	1.956

Appendix part III

Table 15. Residues used for superposition between 3 K 45 and 2QK8

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (\AA
1A	V				
2A	R	1A	M	CA	0.279
3A	P	2A	I	CA	0.724
4A	L	3A	V	CA	0.589
5A	N	4A	S	CA	1.011
6A	C	5A	F	CA	0.875
7A	I	6A	M	CA	0.637
8A	V	7A	V	CA	0.520
9A	A	8A	A	CA	0.345
10A	V	9A	M	CA	0.787
11A	S	10A	D	CA	0.459
12A	Q	11A	E	CA	0.412
13A	N	12A	N	CA	0.548
14A	M	13A	R	CA	0.645
15A	G	14A	V	CA	0.550
16A	I	15A	I	CA	0.418
17A	G	16A	G	CA	0.588
18A	K	17A	K	CA	0.502
19A	N	18A	D	CA	0.287
20A	G	19A	N	CA	0.261
21A	D	20A	N	CA	1.000
22A	L	21A	L	CA	0.891
23A	P	22A	P	CA	1.295
24A	W	23A	W	CA	1.664
25A	P				
26A	P	24A	R	CA	1.070
27A	L	25A	L	CA	0.336
28A	R	26A	P	CA	0.202
29A	N	27A	S	CA	0.259
30A	E	28A	E	CA	0.373
31A	F	29A	L	CA	0.453
32A	K	30A	Q	CA	0.351
33A	Y	31A	Y	CA	0.448
34A	F	32A	V	CA	0.438
35A	Q	33A	K	CA	0.413
36A	R	34A	K	CA	0.393
37A	M	35A	T	CA	0.647
38A	T	36A	T	CA	0.485
39A	T				
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				
48A	N	39A	H	CA	1.359
49A	L	40A	P	CA	1.038
50A	V	41A	L	CA	1.025
51A	I	42A	I	CA	0.785

Appendix part III

52A	M	43A	M	CA	0.635
53A	G	44A	G	CA	0.528
54A	R	45A	R	CA	0.972
55A	K	46A	K	CA	0.961
56A	T	47A	N	CA	0.845
57A	W	48A	Y	CA	1.152
58A	F	49A	E	CA	1.696
59A	S	50A	A	CA	1.502
60A	I	51A	I	CA	1.174
62A	E				
63A	K				
64A	N				
66A	P	54A	P	CA	1.418
67A	L	55A	L	CA	0.664
68A	K	56A	P	CA	0.183
69A	D	57A	G	CA	0.757
70A	R	58A	R	CA	0.673
71A	I	59A	R	CA	0.990
72A	N	60A	N	CA	1.162
73A	I	61A	I	CA	0.811
74A	V	62A	I	CA	0.808
75A	L	63A	V	CA	0.613
76A	S	64A	T	CA	0.982
77A	R	65A	R	CA	1.398
78A	E	66A	N	CA	1.715
		67A	E		
82A	P				
83A	P	71A	V	CA	1.227
84A	R	72A	E	CA	1.495
85A	G	73A	G	CA	1.618
86A	A	74A	C	CA	0.732
87A	H				
88A	F	75A	E	CA	1.774
89A	L	76A	V	CA	1.018
90A	A	77A	A	CA	0.773
91A	K	78A	H	CA	0.633
92A	S	79A	S	CA	1.328
93A	L	80A	V	CA	1.793
95A	D	82A	E	CA	1.677
96A	A	83A	V	CA	0.843
97A	L	84A	F	CA	1.380
100A	I	87A	C	CA	1.268
101A	E				
103A	P				
104A	D				
105A	L				
107A	S				
108A	K				
112A	V	93A	I	CA	1.391
113A	W	94A	F	CA	0.886
114A	I	95A	I	CA	0.910
115A	V	96A	F	CA	0.562
116A	G	97A	G	CA	1.074

Appendix part III

117A	G	98A	G	CA	1.054
118A	S	99A	A	CA	0.892
119A	S	100A	Q	CA	0.601
120A	V	101A	I	CA	0.581
121A	Y	102A	Y	CA	0.982
122A	Q	103A	D	CA	1.442
123A	E	104A	L	CA	1.481
124A	A	105A	F	CA	1.286
125A	M	106A	L	CA	1.606
126A	N				
127A	Q	107A	P	CA	1.513
128A	P				
131A	L	110A	D	CA	1.642
132A	R	111A	K	CA	0.968
133A	L	112A	L	CA	0.983
134A	F	113A	Y	CA	0.369
135A	V	114A	I	CA	0.276
136A	T	115A	T	CA	0.409
137A	R	116A	K	CA	0.517
138A	I	117A	I	CA	0.445
139A	M	118A	H	CA	1.127
140A	Q	119A	H	CA	1.328
141A	E	120A	A	CA	1.187
142A	F	121A	F	CA	1.326
143A	E	122A	E	CA	1.613
145A	D	124A	D	CA	0.486
146A	T	125A	T	CA	0.814
147A	F	126A	F	CA	0.640
148A	F	127A	F	CA	0.408
149A	P	128A	P	CA	1.237
150A	E	129A	E	CA	1.339
152A	D	131A	D	CA	1.158
153A	L	132A	M	CA	1.798
154A	G	133A	T	CA	1.384
157A	K	136A	K	CA	1.675
158A	L	137A	E	CA	1.800
159A	L	138A	V	CA	1.695
160A	P				
162A	Y				
163A	P				
164A	G				
165A	V				
166A	L				
		144A	L		
		147A	E		
		149A	N		
175A	I	151A	Y	CA	0.954
176A	K	152A	T	CA	0.970
177A	Y	153A	Y	CA	0.489
178A	K	154A	Y	CA	0.873
179A	F	155A	Y	CA	0.443
180A	E	156A	H	CA	0.452
181A	V	157A	V	CA	0.470

Appendix part III

$182 A$	Y	$158 A$	Y	CA	1.375
$183 A$	\mathbf{E}	$159 A$	E	CA	1.493
$184 A$	K	$160 A$	K	CA	1.490

Appendix part III

Table 16. Residues used for superposition between 3 K 45 and 2ZZA

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (\AA)
1A	V				
2A	R	1A	V	CA	0.574
3A	P	2A	I	CA	0.517
4A	L	3A	V	CA	0.991
5A	N	4A	S	CA	1.286
6A	C	5A	M	CA	0.564
7A	I	6A	I	CA	0.513
8A	V	7A	A	CA	0.135
9A	A	8A	A	CA	0.152
10A	V	9A	L	CA	0.219
11A	S	10A	A	CA	0.618
12A	Q	11A	N	CA	1.417
13A	N	12A	N	CA	1.414
14A	M	13A	R	CA	0.918
15A	G	14A	V	CA	0.424
16A	I	15A	I	CA	0.616
17A	G	16A	G	CA	0.848
18A	K	17A	L	CA	0.836
19A	N	18A	D	CA	1.222
20A	G	19A	N	CA	1.016
21A	D	20A	K	CA	0.707
22A	L	21A	M	CA	0.974
23A	P	22A	P	CA	1.659
24A	W	23A	W	CA	1.702
25A	P				
26A	P	24A	H	CA	1.360
27A	L	25A	L	CA	0.587
28A	R	26A	P	CA	0.191
29A	N	27A	A	CA	0.213
30A	E	28A	E	CA	0.136
31A	F	29A	L	CA	0.394
32A	K	30A	Q	CA	0.514
33A	Y	31A	L	CA	0.436
34A	F	32A	F	CA	0.397
35A	Q	33A	K	CA	0.554
36A	R	34A	R	CA	0.894
37A	M	35A	A	CA	0.996
38A	T	36A	T	CA	0.301
39A	T				
42A	S				
43A	V				
44A	E				
45A	G				
46A	K				
47A	Q				
48A	N	39A	K	CA	1.331
49A	L	40A	P	CA	0.573
50A	V	41A	I	CA	0.524
51A	I	42A	V	CA	0.575

Appendix part III

52A	M	43A	M	CA	0.466
53A	G	44A	G	CA	0.538
54A	R	45A	R	CA	0.515
55A	K	46A	N	CA	0.811
56A	T	47A	T	CA	0.641
57A	W	48A	F	CA	0.579
58A	F	49A	E	CA	0.950
59A	S	50A	S	CA	0.857
60A	I	51A	I	CA	0.996
62A	E				
63A	K				
64A	N				
66A	P	54A	P	CA	1.389
67A	L	55A	L	CA	0.606
68A	K	56A	P	CA	0.367
69A	D	57A	G	CA	0.681
70A	R	58A	R	CA	0.617
71A	I	59A	L	CA	0.641
72A	N	60A	N	CA	0.667
73A	I	61A	I	CA	0.566
74A	V	62A	V	CA	0.551
75A	L	63A	L	CA	0.350
76A	S	64A	S	CA	0.218
77A	R	65A	R	CA	0.439
78A	E	66A	Q	CA	0.865
		67A	T		
82A	P				
83A	P	71A	P	CA	1.291
84A	R	72A	E	CA	0.916
85A	G	73A	G	CA	1.404
86A	A	74A	V	CA	0.731
87A	H				
88A	F	75A	T	CA	1.400
89A	L	76A	V	CA	0.980
90A	A	77A	V	CA	0.601
91A	K	78A	A	CA	0.380
92A	S	79A	T	CA	0.945
93A	L	80A	L	CA	0.916
94 A	D	81A	E	CA	1.335
95A	D	82A	D	CA	1.401
96A	A	83A	A	CA	1.005
97A	L	84A	V	CA	0.970
101A	E				
103A	P				
104A	D				
105A	L				
107A	S				
108A	K				
112A	V	93A	L	CA	1.230
113A	W	94A	M	CA	0.654
114A	I	95A	I	CA	0.758
115A	V	96A	I	CA	0.716
116A	G	97A	G	CA	1.313

Appendix part III

117A	G	98A	G	CA	0.580
118A	S	99A	A	CA	0.443
119A	S	100A	T	CA	0.245
120A	V	101A	I	CA	0.558
121A	Y	102A	Y	CA	0.600
122A	Q	103A	N	CA	0.706
123A	E	104A	Q	CA	0.963
124A	A	105A	C	CA	1.178
125A	M	106A	L	CA	0.782
127A	Q				
129A	G				
131A	L	110A	D	CA	1.282
132A	R	111A	R	CA	0.572
133A	L	112A	L	CA	0.366
134A	F	113A	Y	CA	0.303
135A	V	114A	L	CA	0.336
136A	T	115A	T	CA	0.170
137A	R	116A	H	CA	0.319
138A	I	117A	I	CA	0.273
139A	M	118A	E	CA	1.167
140A	Q	119A	L	CA	1.691
141A	E	120A	T	CA	0.858
142A	F	121A	T	CA	1.121
143A	E	122A	E	CA	1.037
144A	S	123A	G	CA	1.017
145A	D	124A	D	CA	1.043
146A	T	125A	T	CA	1.343
147A	F	126A	W	CA	0.904
148A	F	127A	F	CA	0.686
149A	P	128A	P	CA	0.581
150A	E	129A	D	CA	0.642
151A	I	130A	Y	CA	1.629
		131A	E		
153A	L				
156A	Y	135A	W	CA	1.915
157A	K	136A	Q	CA	1.878
160A	P				
162A	Y				
163A	P				
164A	G				
165A	V				
166A	L				
170A	Q	143A	Y	CA	1.039
		146A	D		
		147A	D		
		148A	K		
175A	I	151A	H	CA	0.833
176A	K	152A	N	CA	0.552
177A	Y	153A	Y	CA	0.228
178A	K	154A	R	CA	0.746
179A	F	155A	F	CA	0.272
180A	E	156A	S	CA	0.244
181A	V	157A	L	CA	0.801

Appendix part III

$182 A$	Y	$158 A$	L	CA	0.895
$183 A$	E	$159 A$	E	CA	1.048
$184 A$	K	$160 A$	R	CA	1.303
$186 A$	\mathbf{D}				

Appendix part III

Appendix part III

c) Core extension:

the following tables represent the results of the superposition has been undertaken using the core regions and by extending the core in the case having a new regions contain better distance deviation, and the deletion of the absent residues correspending to the fixed molecule.

Table 17. Residues used for superposition between 3 K 45 and 1U70

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (Å)
4A	L	4A	L	CA	0.467
5A	N	5A	N	CA	0.129
6A	C	6A	C	CA	0.110
7A	1	7A	I	CA	0.125
8A	V	8A	V	CA	0.235
9A	A	9A	A	CA	0.221
10A	V	10A	V	CA	0.256
11A	S	11A	S	CA	0.078
12A	Q	12A	Q	CA	0.132
14A	M	14A	M	CA	0.243
15A	G	15A	G	CA	0.360
16A	I	16A	I	CA	0.442
17A	G	17A	G	CA	1.275
18A	K	18A	K	CA	0.456
19A	N	19A	N	CA	0.493
20A	G	20A	G	CA	1.737
21A	D	21A	D	CA	0.952
22A	L	22A	R	CA	0.458
26A	P	26A	P	CA	0.556
27A	L	27A	L	CA	0.341
28A	R	28A	R	CA	0.459
29A	N	29A	N	CA	0.158
30A	E	30A	E	CA	0.364
31A	F	31A	F	CA	0.324
32A	K	32A	K	CA	0.171
33A	Y	33A	Y	CA	0.211
34A	F	34A	F	CA	0.321
35A	Q	35A	Q	CA	0.297
36A	R	36A	R	CA	0.315
37A	M	37A	M	CA	0.427
38A	T	38A	T	CA	0.112
48A	N	48A	N	CA	0.209
49A	L	49A	L	CA	0.247
50A	V	50A	V	CA	0.070
51A	I	51A	I	CA	0.134
52A	M	52A	M	CA	0.136
53A	G	53A	G	CA	0.247
54A	R	54A	R	CA	0.253
55A	K	55A	K	CA	0.269

56A	T	56A	T	CA	0.218
57A	W	57A	W	CA	0.069
58A	F	58A	F	CA	0.362
59A	S	59A	S	CA	0.450
60A	I	60A	I	CA	0.393
66A	P	66A	P	CA	0.289
67A	L	67A	L	CA	0.343
68A	K	68A	K	CA	0.385
69A	D	69A	D	CA	0.357
70A	R	70A	R	CA	0.171
71A	I	71A	I	CA	0.241
72A	N	72A	N	CA	0.245
73A	I	73A	I	CA	0.153
74A	V	74A	V	CA	0.203
75A	L	75A	L	CA	0.207
76A	S	76A	S	CA	0.362
77A	R	77A	R	CA	0.544
88A	F	88A	F	CA	0.200
89A	L	89A	L	CA	0.271
90A	A	90A	A	CA	0.246
91A	K	91A	K	CA	0.211
112A	V	112A	V	CA	0.025
113A	W	113A	W	CA	0.078
114A	I	114A	I	CA	0.320
115A	V	115A	V	CA	0.341
116A	G	116A	G	CA	0.651
117A	G	117A	G	CA	1.584
118A	S	118A	S	CA	1.019
119A	S	119A	S	CA	1.005
120A	V	120A	V	CA	0.743
121A	Y	121A	Y	CA	0.495
122A	Q	122A	Q	CA	0.760
131A	L	131A	L	CA	0.540
132A	R	132A	R	CA	0.317
133A	L	133A	L	CA	0.316
134A	F	134A	F	CA	0.163
135A	V	135A	V	CA	0.166
136A	T	136A	T	CA	0.195
137A	R	137A	R	CA	0.280
138A	I	138A	I	CA	0.161
145A	D	145A	D	CA	0.433
146A	T	146A	T	CA	0.875
147A	F	147A	F	CA	0.686
148A	F	148A	F	CA	0.353
149A	P	149A	P	CA	0.404
175A	I	175A	I	CA	0.203
176A	K	176A	K	CA	0.172
177A	Y	177A	Y	CA	0.279
178A	K	178A	K	CA	0.108
179A	F	179A	F	CA	0.098
180A	E	180A	E	CA	0.086
181A	V	181A	V	CA	0.224
182A	Y	182A	Y	CA	0.204

Appendix part III

$\mathbf{1 8 3 A}$	\mathbf{E}	$\mathbf{1 8 3 A}$	E	CA	$\mathbf{0 . 2 4 3}$
$\mathbf{1 8 4 A}$	K	$\mathbf{1 8 4 A}$	K	CA	$\mathbf{0 . 4 5 9}$

Appendix part III

Table 18. Residues used for superposition between 3K45 and 1DR1

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
4A	L	4A	L	CA	0.705
5A	N	5A	N	CA	0.490
6A	C	6A	S	CA	0.584
7A	I	7A	I	CA	0.160
8A	V	8A	V	CA	0.141
9A	A	9A	A	CA	0.163
10A	V	10A	V	CA	0.357
11A	S	11A	C	CA	0.197
12A	Q	12A	Q	CA	0.907
14A	M	14A	M	CA	0.865
15A	G	15A	G	CA	0.901
16A	I	16A	I	CA	0.679
17A	G	17A	G	CA	1.051
18A	K	18A	K	CA	1.050
19A	N	19A	D	CA	1.366
20A	G	20A	G	CA	1.412
21A	D	21A	N	CA	0.959
22A	L	22A	L	CA	0.661
26A	P	26A	P	CA	0.934
27A	L	27A	L	CA	0.822
28A	R	28A	R	CA	1.236
29A	N	29A	N	CA	0.720
30A	E	30A	E	CA	0.412
31A	F	31A	Y	CA	0.468
32A	K	32A	K	CA	0.228
33A	Y	33A	Y	CA	0.139
34A	F	34A	F	CA	0.168
35A	Q	35A	Q	CA	0.291
36A	R	36A	R	CA	0.310
37A	M	37A	M	CA	0.282
38A	T	38A	T	CA	0.219
48A	N	48A	N	CA	0.500
49A	L	49A	A	CA	0.532
50A	V	50A	V	CA	0.210
51A	I	51A	I	CA	0.209
52A	M	52A	M	CA	0.279
53A	G	53A	G	CA	0.282
54A	R	54A	K	CA	0.652
55A	K	55A	K	CA	0.612
56A	T	56A	T	CA	0.279
57A	W	57A	W	CA	0.299
58A	F	58A	F	CA	0.644
59A	S	59A	S	CA	0.494
60A	I	60A	I	CA	0.490
66A	P	66A	P	CA	0.430
67A	L	67A	L	CA	0.500
68A	K	68A	K	CA	0.325
69A	D	69A	D	CA	0.470

Appendix part III

70A	R	70A	R	CA	0.404
71A	I	71A	I	CA	0.588
72A	N	72A	N	CA	0.583
73A	I	73A	I	CA	0.458
74A	V	74A	V	CA	0.499
75A	L	75A	L	CA	0.372
76A	S	76A	S	CA	0.643
77A	R	77A	R	CA	0.823
88A	F	88A	Y	CA	0.614
89A	L	89A	L	CA	0.549
90A	A	90A	S	CA	0.238
91A	K	91A	K	CA	0.643
112A	V	112A	V	CA	0.313
113A	W	113A	W	CA	0.118
114A	I	114A	I	CA	0.365
115A	V	115A	V	CA	0.471
116A	G	116A	G	CA	1.143
117A	G	117A	G	CA	0.924
118A	S	118A	T	CA	1.357
119A	S	119A	A	CA	1.539
120A	V	120A	V	CA	0.785
121A	Y	121A	Y	CA	0.822
122A	Q	122A	K	CA	1.382
131A	L	131A	H	CA	1.335
132A	R	132A	R	CA	1.083
133A	L	133A	L	CA	0.703
134A	F	134A	F	CA	0.319
135A	V	135A	V	CA	0.161
136A	T	136A	T	CA	0.238
137A	R	137A	R	CA	0.425
138A	I	138A	I	CA	0.406
145A	D	145A	D	CA	0.752
146A	T	146A	T	CA	1.538
147A	F	147A	F	CA	1.123
148A	F	148A	F	CA	0.782
149A	P	149A	P	CA	1.144
175A	I	175A	I	CA	0.746
176A	K	176A	Q	CA	0.551
177A	Y	177A	Y	CA	0.660
178A	K	178A	K	CA	1.094
179A	F	179A	F	CA	0.736
180A	E	180A	E	CA	0.633
181A	V	181A	V	CA	0.401
182A	Y	182A	Y	CA	0.219
183A	E	183A	Q	CA	0.501
184A	K	184A	K	CA	0.528

Appendix part III

Table 19. Residues used for superposition between 3K45 and 4H95

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
4A	L	6A	V	CA	1.361
5A	N	7A	A	CA	0.469
6A	C	8A	I	CA	0.218
7A	I	9A	I	CA	0.215
8A	V	10A	V	CA	0.237
9A	A	11A	A	CA	0.229
10A	V	12A	A	CA	0.381
11A	S	13A	L	CA	0.288
12A	Q	14A	K	CA	1.369
14A	M	17A	L	CA	0.899
15A	G	18A	G	CA	0.219
16A	I	19A	I	CA	0.565
17A	G	20A	G	CA	1.098
18A	K	21A	Y	CA	0.795
19A	N	22A	K	CA	0.866
20A	G	23A	G	CA	0.891
21A	D	24A	K	CA	0.844
22A	L	25A	M	CA	0.645
26A	P	28A	R	CA	0.800
27A	L	29A	L	CA	0.562
28A	R	30A	R	CA	1.297
29A	N	31A	K	CA	0.612
30A	E	32A	E	CA	0.453
31A	F	33A	I	CA	0.448
32A	K	34A	R	CA	0.402
33A	Y	35A	Y	CA	0.451
34A	F	36A	F	CA	0.474
35A	Q	37A	K	CA	0.480
36A	R	38A	D	CA	0.625
37A	M	39A	V	CA	0.611
38A	T	40A	T	CA	0.519
48A	N	50A	N	CA	0.149
49A	L	51A	A	CA	0.185
50A	V	52A	V	CA	0.360
51A	I	53A	I	CA	0.317
52A	M	54A	M	CA	0.151
53A	G	55A	G	CA	0.197
54A	R	56A	R	CA	0.429
55A	K	57A	K	CA	0.559
56A	T	58A	T	CA	0.553
57A	W	59A	W	CA	0.495
58A	F	60A	E	CA	0.571
59A	S	61A	S	CA	0.625
60A	I	62A	I	CA	0.591
66A	P	68A	P	CA	0.494
67A	L	69A	L	CA	0.797
68A	K	70A	P	CA	0.811
69A	D	71A	D	CA	0.346
70A	R	72A	R	CA	0.252

71A	I	73A	L	CA	0.148
72A	N	74A	N	CA	0.099
73A	I	75A	I	CA	0.387
74A	V	76A	I	CA	0.211
75A	L	77A	L	CA	0.162
76A	S	78A	S	CA	0.774
77A	R	79A	R	CA	1.828
88A	F	91A	I	CA	0.572
89A	L	92A	H	CA	0.496
90A	A	93A	A	CA	0.566
91A	K	94A	S	CA	1.632
112A	V	109A	V	CA	0.475
113A	W	110A	F	CA	0.495
114A	I	111A	I	CA	0.393
115A	V	112A	I	CA	0.345
116A	G	113A	G	CA	0.368
117A	G	114A	G	CA	0.424
118A	S	115A	A	CA	0.880
119A	S	116A	E	CA	0.881
120A	V	117A	I	CA	0.769
121A	Y	118A	Y	CA	1.040
122A	Q	119A	N	CA	1.594
131A	L	128A	S	CA	1.356
132A	R	129A	H	CA	0.372
133A	L	130A	L	CA	0.407
134A	F	131A	L	CA	0.147
135A	V	132A	I	CA	0.137
136A	T	133A	T	CA	0.238
137A	R	134A	E	CA	0.463
138A	I	135A	I	CA	0.675
145A	D	146A	D	CA	1.010
146A	T	147A	T	CA	0.672
147A	F	148A	F	CA	0.611
148A	F	149A	L	CA	0.989
149A	P	150A	K	CA	1.457
175A	I	182A	F	CA	1.572
176A	K	183A	T	CA	0.668
177A	Y	184A	Y	CA	0.304
178A	K	185A	N	CA	0.312
179A	F	186A	Y	CA	0.417
180A	E	187A	T	CA	0.469
181A	V	188A	L	CA	0.386
182A	Y	189A	W	CA	0.188
183A	E	190A	T	CA	0.776
184A	K	191A	R	CA	1.521

Appendix part III

Table 20. Residues used for superposition between 3K45 and 4GH8

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
4A	L	2A	I	CA	0.452
5A	N	3A	S	CA	0.786
6A	C	4A	L	CA	0.308
7A	I	5A	I	CA	0.131
8A	V	6A	A	CA	0.181
9A	A	7A	A	CA	0.402
10A	V	8A	L	CA	0.154
11A	S	9A	A	CA	0.963
12A	Q	10A	V	CA	1.683
14A	M	12A	R	CA	0.834
15A	G	13A	V	CA	0.361
16A	I	14A	I	CA	0.336
17A	G	15A	G	CA	0.213
18A	K	16A	M	CA	0.834
19A	N	17A	E	CA	1.217
20A	G	18A	N	CA	0.750
21A	D	19A	A	CA	0.192
22A	L	20A	M	CA	0.261
26A	P	24A	P	CA	0.707
27A	L	25A	L	CA	0.582
28A	R	26A	P	CA	1.127
29A	N	27A	A	CA	1.328
30A	E	28A	D	CA	0.773
31A	F	29A	L	CA	0.429
32A	K	30A	A	CA	0.729
33A	Y	31A	W	CA	0.708
34A	F	32A	F	CA	0.208
35A	Q	33A	K	CA	0.629
36A	R	34A	R	CA	0.868
37A	M	35A	N	CA	0.782
38A	T	36A	T	CA	0.379
48A	N	39A	K	CA	0.948
49A	L	40A	P	CA	0.397
50A	V	41A	V	CA	0.259
51A	I	42A	I	CA	0.282
52A	M	43A	M	CA	0.183
53A	G	44A	G	CA	0.185
54A	R	45A	R	CA	0.446
55A	K	46A	H	CA	0.631
56A	T	47A	T	CA	0.382
57A	W	48A	W	CA	0.393
58A	F	49A	E	CA	1.119
59A	S	50A	S	CA	0.852
60A	I	51A	I	CA	0.751
66A	P	57A	P	CA	0.868
67A	L	58A	L	CA	0.464
68A	K	59A	P	CA	0.200
69A	D	60A	G	CA	0.424
70A	R	61A	R	CA	0.371

Appendix part III

71A	I	62A	K	CA	0.444
72A	N	63A	N	CA	0.604
73A	I	64A	I	CA	0.399
74A	V	65A	I	CA	0.309
75A	L	66A	L	CA	0.378
76A	S	67A	S	CA	0.547
77A	R	68A	S	CA	0.482
88A	F	77A	T	CA	1.546
89A	L	78A	W	CA	1.274
90A	A	79A	V	CA	1.083
91A	K	80A	K	CA	0.688
112A	V	95A	I	CA	0.955
113A	W	96A	M	CA	0.284
114A	I	97A	V	CA	0.262
115A	V	98A	I	CA	0.222
116A	G	99A	G	CA	0.537
117A	G	100A	G	CA	0.425
118A	S	101A	G	CA	0.428
119A	S	102A	R	CA	0.384
120A	V	103A	V	CA	0.394
121A	Y	104A	Y	CA	0.350
122A	Q	105A	E	CA	0.211
131A	L	112A	Q	CA	1.716
132A	R	113A	K	CA	0.769
133A	L	114A	L	CA	0.726
134A	F	115A	Y	CA	0.346
135A	V	116A	L	CA	0.635
136A	T	117A	T	CA	0.511
137A	R	118A	H	CA	0.670
138A	I	119A	I	CA	0.735
145A	D	126A	D	CA	1.086
146A	T	127A	T	CA	0.926
147A	F	128A	H	CA	0.634
148A	F	129A	F	CA	0.635
149A	P	130A	P	CA	0.815
175A	I	153A	H	CA	0.746
176A	K	154A	S	CA	0.713
177A	Y	155A	Y	CA	0.508
178A	K	156A	C	CA	0.787
179A	F	157A	F	CA	0.618
180A	E	158A	E	CA	0.601
181A	V	159A	I	CA	0.785
182A	Y	160A	L	CA	1.088
183A	E	161A	E	CA	1.272
184A	K	162A	R	CA	1.516

Appendix part III

Table 21. Residues used for superposition between 3K45 and 1ZDR

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
4A	L	2A	I	CA	0.808
5A	N	3A	S	CA	0.903
6A	C	4A	H	CA	0.444
7A	I	5A	I	CA	0.241
8A	V	6A	V	CA	0.239
9A	A	7A	A	CA	0.451
10A	V	8A	M	CA	0.798
11A	S	9A	D	CA	0.344
12A	Q	10A	E	CA	0.255
14A	M	12A	R	CA	1.011
15A	G	13A	V	CA	0.702
16A	I	14A	I	CA	0.589
17A	G	15A	G	CA	0.980
18A	K	16A	K	CA	0.665
19A	N	17A	D	CA	0.903
20A	G	18A	N	CA	0.796
21A	D	19A	R	CA	0.858
22A	L	20A	L	CA	1.213
26A	P	23A	H	CA	1.575
27A	L	24A	L	CA	0.997
28A	R	25A	P	CA	1.236
29A	N	26A	A	CA	1.358
30A	E	27A	D	CA	0.840
31A	F	28A	L	CA	0.035
32A	K	29A	A	CA	0.143
33A	Y	30A	Y	CA	0.182
34A	F	31A	F	CA	0.252
35A	Q	32A	K	CA	0.182
36A	R	33A	R	CA	0.321
37A	M	34A	V	CA	0.453
38A	T	35A	T	CA	0.658
48A	N	38A	H	CA	1.061
49A	L	39A	A	CA	0.472
50A	V	40A	I	CA	0.594
51A	I	41A	V	CA	0.405
52A	M	42A	M	CA	0.248
53A	G	43A	G	CA	0.454
54A	R	44A	R	CA	0.558
55A	K	45A	K	CA	0.494
56A	T	46A	T	CA	0.342
57A	W	47A	F	CA	0.452
58A	F	48A	E	CA	0.888
59A	S	49A	A	CA	0.399
60A	I	50A	I	CA	1.001
66A	P	53A	P	CA	1.174
67A	L	54A	L	CA	0.992
68A	K	55A	P	CA	1.011
69A	D	56A	G	CA	0.842

Appendix part III

70A	R	57A	R	CA	1.049
71A	I	58A	D	CA	0.587
72A	N	59A	N	CA	0.457
73A	I	60A	V	CA	0.563
74A	V	61A	V	CA	0.574
75A	L	62A	V	CA	0.901
76A	S	63A	T	CA	0.681
88A	F	74A	L	CA	0.574
89A	L	75A	V	CA	0.519
90A	A	76A	L	CA	0.551
91A	K	77A	H	CA	1.185
112A	V	93A	V	CA	0.508
113A	W	94A	F	CA	0.459
114A	I	95A	I	CA	0.445
115A	V	96A	I	CA	0.472
116A	G	97A	G	CA	0.246
117A	G	98A	G	CA	1.261
118A	S	99A	A	CA	0.575
119A	S	100A	E	CA	0.494
120A	V	101A	L	CA	0.768
121A	Y	102A	F	CA	0.576
122A	Q	103A	R	CA	0.454
131A	L	110A	D	CA	1.216
132A	R	111A	R	CA	0.379
133A	L	112A	L	CA	0.366
134A	F	113A	Y	CA	0.148
135A	V	114A	V	CA	0.159
136A	T	115A	T	CA	0.257
137A	R	116A	K	CA	0.479
138A	I	117A	I	CA	0.354
145A	D	124A	D	CA	0.320
146A	T	125A	T	CA	1.071
147A	F	126A	F	CA	0.934
148A	F	127A	Y	CA	0.692
149A	P	128A	P	CA	0.403
175A	I	151A	Y	CA	0.826
176A	K	152A	E	CA	0.967
177A	Y	153A	H	CA	0.511
178A	K	154A	A	CA	0.454
179A	F	155A	F	CA	0.412
180A	E	156A	I	CA	0.264
181A	V	157A	I	CA	0.215
182A	Y	158A	Y	CA	0.336
183A	E	159A	E	CA	0.731
184A	K	160A	R	CA	1.839

Appendix part III

Table 22. Residues used for superposition between 3K45 and 3JW3

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
4A	L	3A	V	CA	0.373
5A	N	4A	S	CA	0.654
6A	C	5A	F	CA	0.565
7A	I	6A	M	CA	0.361
8A	V	7A	V	CA	0.477
9A	A	8A	A	CA	0.336
10A	V	9A	M	CA	0.515
11A	S	10A	D	CA	0.207
12A	Q	11A	E	CA	0.481
14A	M	13A	R	CA	0.969
15A	G	14A	V	CA	0.647
16A	I	15A	I	CA	0.577
17A	G	16A	G	CA	0.838
18A	K	17A	K	CA	0.725
19A	N	18A	D	CA	0.885
20A	G	19A	N	CA	0.918
21A	D	20A	N	CA	0.680
22A	L	21A	L	CA	1.225
26A	P	24A	R	CA	1.172
27A	L	25A	L	CA	0.255
28A	R	26A	P	CA	0.365
29A	N	27A	S	CA	0.476
30A	E	28A	E	CA	0.532
31A	F	29A	L	CA	0.578
32A	K	30A	Q	CA	0.425
33A	Y	31A	Y	CA	0.243
34A	F	32A	V	CA	0.597
35A	Q	33A	K	CA	0.614
36A	R	34A	K	CA	0.503
37A	M	35A	T	CA	0.520
38A	T	36A	T	CA	0.938
48A	N	39A	H	CA	1.084
49A	L	40A	P	CA	0.619
50A	V	41A	L	CA	0.642
51A	I	42A	I	CA	0.633
52A	M	43A	M	CA	0.398
53A	G	44A	G	CA	0.298
54A	R	45A	R	CA	0.211
55A	K	46A	K	CA	0.598
56A	T	47A	N	CA	0.716
57A	W	48A	Y	CA	0.668
58A	F	49A	E	CA	0.742
59A	S	50A	A	CA	0.766
60A	I	51A	I	CA	0.961
66A	P	54A	P	CA	1.148
67A	L	55A	L	CA	1.343
68A	K	56A	P	CA	0.975
69A	D	57A	G	CA	0.311
70A	R	58A	R	CA	0.515

Appendix part III

71A	I	59A	R	CA	0.536
72A	N	60A	N	CA	0.715
73A	I	61A	I	CA	0.717
74A	V	62A	I	CA	0.456
75A	L	63A	V	CA	0.363
76A	S	64A	T	CA	0.499
77A	R	65A	R	CA	0.166
88A	F	75A	E	CA	1.397
89A	L	76A	V	CA	0.723
90A	A	77A	A	CA	0.764
91A	K	78A	H	CA	0.727
112A	V	93A	I	CA	0.671
113A	W	94A	F	CA	0.510
114A	I	95A	I	CA	0.536
115A	V	96A	I	CA	0.651
116A	G	97A	G	CA	0.794
117A	G	98A	G	CA	0.496
118A	S	99A	A	CA	0.672
119A	S	100A	Q	CA	0.682
120A	V	101A	I	CA	0.834
121A	Y	102A	Y	CA	0.971
122A	Q	103A	D	CA	1.252
131A	L	110A	D	CA	1.351
132A	R	111A	K	CA	0.756
133A	L	112A	L	CA	1.005
134A	F	113A	Y	CA	0.095
135A	V	114A	I	CA	0.205
136A	T	115A	T	CA	0.245
137A	R	116A	K	CA	0.413
138A	I	117A	I	CA	0.455
145A	D	124A	D	CA	0.411
146A	T	125A	T	CA	1.291
147A	F	126A	F	CA	1.027
148A	F	127A	F	CA	0.672
149A	P	128A	P	CA	1.052
175A	I	151A	Y	CA	0.472
176A	K	152A	T	CA	0.271
177A	Y	153A	Y	CA	0.214
178A	K	154A	Y	CA	0.548
179A	F	155A	Y	CA	0.374
180A	E	156A	H	CA	0.393
181A	V	157A	V	CA	0.529
182A	Y	158A	Y	CA	1.095
183A	E	159A	E	CA	1.609
184A	K	160A	K	CA	1.727

Appendix part III

Table 23. Residues used for superposition between 3K45 and 2QK8

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (A)
4A	L	3A	V	CA	0.471
5A	N	4A	S	CA	0.874
6A	C	5A	F	CA	0.717
7A	I	6A	M	CA	0.598
8A	V	7A	V	CA	0.363
9A	A	8A	A	CA	0.440
10A	V	9A	M	CA	1.023
11A	S	10A	D	CA	0.526
12A	Q	11A	E	CA	0.479
14A	M	13A	R	CA	0.881
15A	G	14A	V	CA	0.812
16A	I	15A	I	CA	0.695
17A	G	16A	G	CA	0.864
18A	K	17A	K	CA	0.841
19A	N	18A	D	CA	0.650
20A	G	19A	N	CA	0.529
21A	D	20A	N	CA	1.307
22A	L	21A	L	CA	1.149
26A	P	24A	R	CA	0.838
27A	L	25A	L	CA	0.541
28A	R	26A	P	CA	0.437
29A	N	27A	S	CA	0.436
30A	E	28A	E	CA	0.529
31A	F	29A	L	CA	0.583
32A	K	30A	Q	CA	0.198
33A	Y	31A	Y	CA	0.405
34A	F	32A	V	CA	0.558
35A	Q	33A	K	CA	0.556
36A	R	34A	K	CA	0.424
37A	M	35A	T	CA	0.685
38A	T	36A	T	CA	0.578
48A	N	39A	H	CA	1.209
49A	L	40A	P	CA	0.861
50A	V	41A	L	CA	0.873
51A	I	42A	I	CA	0.605
52A	M	43A	M	CA	0.459
53A	G	44A	G	CA	0.429
54A	R	45A	R	CA	0.796
55A	K	46A	K	CA	0.705
56A	T	47A	N	CA	0.588
57A	W	48A	Y	CA	0.933
58A	F	49A	E	CA	1.418
59A	S	50A	A	CA	1.267
60A	I	51A	I	CA	0.952
66A	P	54A	P	CA	1.149
67A	L	55A	L	CA	0.607
68A	K	56A	P	CA	0.190
69A	D	57A	G	CA	0.598
70A	R	58A	R	CA	0.473

Appendix part III

71A	I	59A	R	CA	0.771
72A	N	60A	N	CA	0.972
73A	I	61A	I	CA	0.646
74A	V	62A	I	CA	0.590
75A	L	63A	V	CA	0.488
76A	S	64A	T	CA	0.868
77A	R	65A	R	CA	1.445
88A	F	75A	E	CA	1.621
89A	L	76A	V	CA	0.876
90A	A	77A	A	CA	0.840
91A	K	78A	H	CA	0.831
112A	V	93A	I	CA	1.256
113A	W	94A	F	CA	0.738
114A	I	95A	I	CA	0.740
115A	V	96A	F	CA	0.452
116A	G	97A	G	CA	0.914
117A	G	98A	G	CA	0.913
118A	S	99A	A	CA	0.709
119A	S	100A	Q	CA	0.455
120A	V	101A	I	CA	0.595
121A	Y	102A	Y	CA	0.915
122A	Q	103A	D	CA	1.429
131A	L	110A	D	CA	1.604
132A	R	111A	K	CA	0.901
133A	L	112A	L	CA	0.940
134A	F	113A	Y	CA	0.288
135A	V	114A	I	CA	0.091
136A	T	115A	T	CA	0.258
137A	R	116A	K	CA	0.570
138A	I	117A	I	CA	0.483
145A	D	124A	D	CA	0.256
146A	T	125A	T	CA	1.107
147A	F	126A	F	CA	0.908
148A	F	127A	F	CA	0.617
149A	P	128A	P	CA	1.372
175A	I	151A	Y	CA	0.829
176A	K	152A	T	CA	0.688
177A	Y	153A	Y	CA	0.319
178A	K	154A	Y	CA	0.662
179A	F	155A	Y	CA	0.658
180A	E	156A	H	CA	0.640
181A	V	157A	V	CA	0.616
182A	Y	158A	Y	CA	1.390
183A	E	159A	E	CA	1.502
184A	K	160A	K	CA	1.511

Appendix part III

Table 24. Residues used for superposition between 3 K 45 and 2ZZA

Residue number (Fixed)	Residue name (Fixed)	Residue number (Rotated)	Residue name (Rotated)	Atom name	Deviation (Å)
4A	L	3A	V	CA	0.775
5A	N	4A	S	CA	1.056
6A	C	5A	M	CA	0.373
7A	I	6A	I	CA	0.357
8A	V	7A	A	CA	0.103
9A	A	8A	A	CA	0.221
10A	V	9A	L	CA	0.308
11A	S	10A	A	CA	0.675
12A	Q	11A	N	CA	1.437
14A	M	13A	R	CA	1.019
15A	G	14A	V	CA	0.507
16A	I	15A	I	CA	0.697
17A	G	16A	G	CA	0.910
18A	K	17A	L	CA	0.894
19A	N	18A	D	CA	1.276
20A	G	19A	N	CA	1.074
21A	D	20A	K	CA	0.759
22A	L	21A	M	CA	1.024
26A	P	24A	H	CA	1.345
27A	L	25A	L	CA	0.578
28A	R	26A	P	CA	0.241
29A	N	27A	A	CA	0.195
30A	E	28A	E	CA	0.141
31A	F	29A	L	CA	0.314
32A	K	30A	Q	CA	0.418
33A	Y	31A	L	CA	0.373
34A	F	32A	F	CA	0.299
35A	Q	33A	K	CA	0.359
36A	R	34A	R	CA	0.729
37A	M	35A	A	CA	0.826
38A	T	36A	T	CA	0.217
48A	N	39A	K	CA	1.235
49A	L	40A	P	CA	0.356
50A	V	41A	I	CA	0.357
51A	I	42A	V	CA	0.393
52A	M	43A	M	CA	0.277
53A	G	44A	G	CA	0.359
54A	R	45A	R	CA	0.358
55A	K	46A	N	CA	0.694
56A	T	47A	T	CA	0.522
57A	W	48A	F	CA	0.460
58A	F	49A	E	CA	0.849
59A	S	50A	S	CA	0.775
60A	I	51A	I	CA	0.877
66A	P	54A	P	CA	1.334
67A	L	55A	L	CA	0.745
68A	K	56A	P	CA	0.425
69A	D	57A	G	CA	0.675
70A	R	58A	R	CA	0.613

Appendix part III

71A	I	59A	L	CA	0.536
72A	N	60A	N	CA	0.673
73A	I	61A	I	CA	0.503
74A	V	62A	V	CA	0.405
75A	L	63A	L	CA	0.173
76A	S	64A	S	CA	0.162
77A	R	65A	R	CA	0.610
88A	F	75A	T	CA	1.517
89A	L	76A	V	CA	1.052
90A	A	77A	V	CA	0.799
91A	K	78A	A	CA	0.603
112A	V	93A	L	CA	0.959
113A	W	94A	M	CA	0.421
114A	I	95A	I	CA	0.556
115A	V	96A	I	CA	0.547
116A	G	97A	G	CA	1.193
117A	G	98A	G	CA	0.458
118A	S	99A	A	CA	0.324
119A	S	100A	T	CA	0.133
120A	V	101A	I	CA	0.382
121A	Y	102A	Y	CA	0.410
122A	Q	103A	N	CA	0.509
131A	L	110A	D	CA	1.271
132A	R	111A	R	CA	0.454
133A	L	112A	L	CA	0.412
134A	F	113A	Y	CA	0.393
135A	V	114A	L	CA	0.427
136A	T	115A	T	CA	0.164
137A	R	116A	H	CA	0.355
138A	I	117A	I	CA	0.318
145A	D	124A	D	CA	1.133
146A	T	125A	T	CA	1.451
147A	F	126A	W	CA	1.018
148A	F	127A	F	CA	0.823
149A	P	128A	P	CA	0.737
175A	I	151A	H	CA	0.792
176A	K	152A	N	CA	0.532
177A	Y	153A	Y	CA	0.214
178A	K	154A	R	CA	0.651
179A	F	155A	F	CA	0.197
180A	E	156A	S	CA	0.291
181A	V	157A	L	CA	0.971
182A	Y	158A	L	CA	1.062
183A	E	159A	E	CA	1.179
184A	K	160A	R	CA	1.277

References

- Abali EE, Skacel NE, Celikkaya H, Hsieh YC. (2008) Chapter 9 regulation of human dihydrofolate reductase activity and expression. Vitam. Horm. 79: 267-92.
- Aryal, S. (2021). NMR Spectroscopy- Definition, Principle, Steps, Parts, Uses. Microbe Notes. Retrieved from https://microbenotes.com/nuclear-magnetic-resonance-nmr-spectroscopy/\#principle-of-nuclear-magnetic-resonance-nmr-spectroscopy
- Beierlein, J. M., Karri, N. G., \& Anderson, A. C. (2010). Targeted mutations of Bacillus anthracis dihydrofolate reductase condense complex structure-activity relationships. Journal of medicinal chemistry, 53(20), 7327-7336. https://doi.org/10.1021/jm100727t.
- Biochemistry Glossary: Peptide Bond Formation. Retrieved from https://www.drawittoknowit.com/course/biochemistry/glossary/biochemical-pathway/peptide-bond-formation
- Chakraborty S, Venkatramani R, Rao BJ, Asgeirsson B, Dandekar AM. (2013) Protein structure quality assessment based on the distance profiles of consecutive backbone $\mathrm{C} \alpha$ atoms. F1000Res. Oct 10;2:211. doi: 10.12688/f1000research.2-211.v3. PMID: 24555103; PMCID: PMC3892923.
- CNX Open Stack Microbio 0704 proteinstr.jpg - Wikimedia Commons. (2016). Retrieved from:https://commons.wikimedia.org/wiki/File:OSC_Microbio_07_04_proteinstr.jpg
- Cody V., Luft J. R., Pangborn W. (2005) Understanding the role of Leu22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH. Acta Cryst. D61, 147-155. Available from: https://doi.org/10.1107/s0907444904030422
- Cody, V., Luft, J. R., \& Pangborn, W. (2005). Understanding the role of Leu 22 variants in methotrexate resistance: comparison of wild-type and Leu22Arg variant mouse and human dihydrofolate reductase ternary crystal complexes with methotrexate and NADPH. Acta crystallographica. Section D, Biological crystallography, 61(Pt 2), 147-155. https://doi.org/10.1107/S0907444904030422.
- Courtesy of Malvern-PANalytical B.V.,What is X-Ray Powder Diffraction analysisXRPD?. Retrieved from http://www.xrpd.eu/
- Cowman AF, Lew AM (November 1989). "Antifolate drug selection results in duplication and rearrangement of chromosome 7 in Plasmodium chabaudi". Molecular and Cellular Biology. 9 (11): 5182-8. doi:10.1128/mcb.9.11.5182. PMC 363670. PMID 2601715
- Darnell, S. (2020). Why Structure Prediction Matters. DNASTAR. Retrieved from https://www.dnastar.com/blog/structural-biology/why-structure-prediction-matters/
- Davies, J.F. et. al. (1990). Crystal structures of recombinant human dihydrofolate reductase complexed with folate and 5-deazafolate. Biochemistry Oct 9;29(40):9467-9479. Available from: https://doi.org/10.1021/bi00492a021
- DeJarnette, C., Luna-Tapia, A., Estredge, L. R., \& Palmer, G. E. (2020). Dihydrofolate Reductase Is a Valid Target for Antifungal Development in the Human Pathogen Candida albicans. mSphere, 5(3), e00374-20. https://doi.org/10.1128/mSphere.00374-20.
- Deléage, G., Gouy, M., \& Brevern, A. (2021). Bioinformatique (3rd ed., p. 47). france: [Dunod].
- Deng, H., Jia, Y., \& Zhang, Y. (2018). Protein structure prediction. International journal of modern physics. B, 32(18), 1840009. https://doi.org/10.1142/S021797921840009X

References

- Drenth J (1994), principles of x-ray crystallography. springer-verlag, New york
- Eldon L. Ulrich; Hideo Akutsu; et al ; Nucleic Acids Research 36, D402-D408 (2008) doi: 10.1093/nar/gkm957
- Futterman, S. (1957) Enzymatic reduction of folic acid and dihydrofolic acid to tetrahydrofolic acid. J. Biol. Chem. 228: 1031-8.
- Gangjee, A., Li, W., Lin, L., Zeng, Y., Ihnat, M., Warnke, L. A., Green, D. W., Cody, V., Pace, J., \& Queener, S. F. (2009). Design, synthesis, and X-ray crystal structures of 2,4-diaminofuro[2,3-d]pyrimidines as multireceptor tyrosine kinase and dihydrofolate reductase inhibitors. Bioorganic \& medicinal chemistry, 17(20), 7324-7336. https://doi.org/10.1016/j.bmc.2009.08.044.
- García-Álvarez, L., Busto, J., Peregrina, J., Avenoza, A., \& Oteo, J. (2016). Applications of 1H Nuclear Magnetic Resonance Spectroscopy in Clinical Microbiology. Applications Of Molecular Spectroscopy To Current Research In The Chemical And Biological Sciences,pg 284. doi: 10.5772/64450
- Golovin, A., Dimitropoulos, D., Oldfield, T., Rachedi, A., Henrick, K. (2005). MSDsite: a database search and retrieval system for the analysis and viewing of bound ligands and active sites. Proteins, 58(1):190-199. Available from https://doi.org/10.1002/prot. 20288
- Goodsell, D. (2002). Dihydrofolate Reductase. RCSB Protein Data Bank. doi: 10.2210/rcsb_pdb/mom_2002_10
- Goodsell, D. S. (2002). Dihydrofolate reductase. RCSB Protein Data Bank. https://doi.org/10.2210/rcsb_pdb/mom_2002_10
- H., Berman; Henrick, K.; Nakamura, H.; Markley, J. L. (January 2007). "The worldwide Protein Data Bank (wwPDB): ensuring a single, uniform archive of PDB data". Nucleic Acids Res. 35 (Database issue): D301-D303. doi:10.1093/nar/gk1971. PMC 1669775. PMID 17142228
- Haddad Y, Adam V, Heger Z (2020) Ten quick tips for homology modeling of highresolution protein 3D structures. PLoS Comput Biol 16(4): e1007449. https://doi.org/10.1371/journal.pcbi. 1007449
- Hartl, F. U., \& Hayer-Hartl, M. Converging concepts of protein folding in vitro and in vivo. Nature Structural and Molecular Biology 16, 574-581 (2009) doi:10.1038/nsmb. 1591.
- Héctor Zamora , C. (2021). NMR Spectroscopy Principles, Interpreting an NMR Spectrum and Common Problems. Technology Network. Retrieved from https://www.technologynetworks.com/analysis/articles/nmr-spectroscopy-principles-interpreting-an-nmr-spectrum-and-common-problems-355891\#D9
http://www.sbg.bio.ic.ac.uk/ezmol/EzMol_Data/images/student/pdf/proteinstructure.pdf
https://leeds.primo.exlibrisgroup.com/permalink/44LEE_INST/5rdk19/alma9910068730197 05181
https://leeds.primo.exlibrisgroup.com/permalink/44LEE_INST/5rdk19/alma991006873019705 181
- J.S. Richardson , D.C. Richardson, (1992) Protein Science - Vol. 1, Issue 3 "The Protein Tourist: DOUBLY-WOUND PARALLEL ALPHA/BETA PROTEINS, OR NUCLEOTIDE-BINDING DOMAINS",

References

- Johnson, M., Zaretskaya, I., Raytselis, Y., Merezhuk, Y., McGinnis, S., \& Madden, T. (2008). NCBI BLAST: a better web interface. Nucleic Acids Research, 36(Web Server), W5-W9. doi: 10.1093/nar/gkn201
- K.Sumathi, P.Ananthalakshmi, M.N.A. Md Roshan and K.Sekar , 3d-ss (3Dimensional Structural Superposition), 2005, http://cluster.physics.iisc.ernet.in/3dss/.
- khan, T. (2020). How to Search Protein Data Bank (PDB) | Sci Chores. Retrieved from https://www.scichores.com/2020/08/how-to-search-protein-data-bank-pdb-sci.html
- Kinjo, A., Suzuki, H., Yamashita, R., Ikegawa, Y., Kudou, T., \& Igarashi, R. et al. (2011). Protein Data Bank Japan (PDBj): maintaining a structural data archive and resource description framework format. Nucleic Acids Research, 40(D1), D453-D460. doi: 10.1093/nar/gkr811
- Kumar, S., Demo, G., Koca, J., \& Wimmerova, M. (2012). In Silico Engineering of Proteins That Recognize Small Molecules. Protein Engineering. doi: 10.5772/28001.
- Lam, A. J., Rao, L., Anazawa, Y., Okada, K., Chiba, K., Niwa, S., Gennerich, A., Nowakowski, D. W., \& McKenney, R. J. (2020). A highly conserved 310-helix within the Kinesin Motor Domain is critical for kinesin function and human health. https://doi.org/10.1101/2020.09.22.308320
- Larry Li., Biologydictionary.net Editors. (2014). Organ. Retrieved from https://biologydictionary.net/tertiary-structure/
- Lee, J., Freddolino, P., \& Zhang, Y. (2017). Ab Initio Protein Structure Prediction. From Protein Structure To Function With Bioinformatics, 3-35. doi: 10.1007/978-94-024-10693_1
- Lever, G. (2015). Large-Scale Quantum-Mechanical Enzymology. Springer Theses. doi: 10.1007/978-3-319-19351-9
- M. Dorn et al. Márcio Dorna,*, Mariel Barbachan e Silva b, Luciana S. Buriol a, Luis C. Lamba / Computational Biology and Chemistry 53 (2014) 251-276
- Manske, M. (2001). Beta sheet - Wikipedia, from https://en.wikipedia.org/wiki/Beta_sheet
- Marcella Martos, Meredith Turnbough. (2012, April 27). What Are Proteins?. ASU Ask A Biologist. Retrieved from https://askabiologist.asu.edu/venom/what-are-proteins
- McTigue, M. A., Davies, J. F., 2nd, Kaufman, B. T., \& Kraut, J. (1992). Crystal structure of chicken liver dihydrofolate reductase complexed with NADP+ and biopterin. Biochemistry, 31(32), 7264-7273. https://doi.org/10.1021/bi00147a009.
- MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US); [updated 2020 Jun 24]. Noonan syndrome; [updated 2020 Jun 18; reviewed 2018 Jun 01; cited 2020 Jul 1]; [about 5 p.]. Available from: https://medlineplus.gov/genetics/condition/noonan-syndrome/.
- Mutharasappan, N., Ravi Rao, G., Mariadasse, R., Poopandi, S., Mathimaran, A., Dhamodharan, P., Sundarraj, R., Jeyaraj Pandian, C. and Jeyaraman, J., 2020. Experimental and Computational Methods to Determine Protein Structure and Stability. Frontiers in Protein Structure, Function, and Dynamics, pp.23-55.
- OpenStax College, Biology. OpenStax College. 30 May 2013. http://cnx.org/content/col11448/latest/.

References

- Osborne MJ, Schnell J, Benkovic SJ, Dyson HJ, Wright PE (August 2001). "Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism". Biochemistry. 40 (33): 9846-59. doi:10.1021/bi010621k. PMID 11502178
- Pan, A., Pranavathiyani, G., \& Chakraborty, S. (2021). Computational Modeling of Protein Three-Dimensional Structure: Methods and Resources. Molecular Docking For Computer-Aided Drug Design, 155-178. doi: 10.1016/b978-0-12-822312-3.00023-0
- PDB. (2007). Sucrose porin 1a0s.png [Image]. Retrieved from https://upload.wikimedia.org/wikipedia/commons/thumb/f/fb/Sucrose_porin_1a0s.png/800 px-Sucrose porin_1a0s.png
- Penhallurick, R. W., \& Ichiye, T. (2021). Pressure Adaptations in Deep-Sea Moritella Dihydrofolate Reductases: Compressibility versus Stability. Biology, 10(11), 1211. https://doi.org/10.3390/biology10111211
- Pundir, S., Martin, M. J., O'Donovan, C., \& UniProt Consortium (2016). UniProt Tools. Current protocols in bioinformatics, 53, 1.29.1-1.29.15. https://doi.org/10.1002/0471250953.bi0129s53
- R. B. Russell \& G. J. Barton, Multiple Protein sequence alignment from tertiary structure comparision, PROTEINS: Struct. Funct. Genet.,14, 309-323, 1992.
- Rachedi, A. (1994) Three-dimensional structural studies on dihydrofolate reductase, Chapter 8 Ph.D Thesis, University of Leed, UK. Availabe from
- Rachedi, A. (2011). Sequence Structure and Function Server, 2011, https://bioinformaticstools.org/ssfs/
- Raimondi, M. V., Randazzo, O., La Franca, M., Barone, G., Vignoni, E., Rossi, D., \& Collina, S. (2019). DHFR Inhibitors: Reading the Past for Discovering Novel Anticancer Agents. Molecules (Basel, Switzerland), 24(6), 1140. https://doi.org/10.3390/molecules24061140
- Reddy Michael K,. (2020, October 20). amino acid. Encyclopedia Britannica. https://www.britannica.com/science/amino-acid
- Rehman I, Farooq M, Botelho S. Biochemistry, Secondary Protein Structure. [Updated 2021 Dec 15]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK470235/
- Rives A. et al. (2021) Biological structure and function emerge from scaling unsupervised learning to 250 million protein sequences, Proc. Natl. Acad. Sci., 118 (15) :e2016239118. Available from https://doi.org/10.1073/pnas. 2016239118
- Russell, p. (2010). Amino Acid Structure. Retrieved 28 April 2022, from https://www.mun.ca/biology/scarr/iGen3_06-01.html
- Sliwoski, G., Kothiwale, S., Meiler, J., \& Lowe, E. (2013). Computational Methods in Drug Discovery. Pharmacological Reviews, 66(1), 334-395. doi: 10.1124/pr.112.007336
- Smith SL, Patrick P, Stone D, Phillips AW, Burchall JJ. J. Biol. Chem Porcine liver dihydrofolate reductase. Purification, properties, and amino acid sequence.. 254, 11475-84, (1979).
- Smyth, M. S., \& Martin, J. H. (2000). x ray crystallography. Molecular pathology : MP, 53(1), 8-14. https://doi.org/10.1136/mp.53.1.8

References

- Srinivasan B., Tonddast-Navaei S., Roy A., Zhou H., Skolnick J. Chemical Space of Escherichia coli Dihydrofolate Reductase Inhibitors: New Approaches for Discovering Novel Drugs for Old Bugs. Med. Res. Rev. 2019;39:684-705. doi: 10.1002/med.21538. Structural Bioinformatics Group: protein-structure
- Srinivasan, B., Tonddast-Navaei, S., Roy, A., Zhou, H., \& Skolnick, J. (2019). Chemical space of Escherichia coli dihydrofolate reductase inhibitors: New approaches for discovering novel drugs for old bugs. Medicinal research reviews, 39(2), 684-705. https://doi.org/10.1002/med.21538.
- Stryer L, Berg JM, Tymoczko JL (2002). Biochemistry (5th ed.). San Francisco: W.H. Freeman. ISBN 0-7167-4955-6.open access
- Sumathi, K., Ananthalakshmi, P., Roshan, M. N., \& Sekar, K. (2006). https://doi.org/10.1093/nar/gkl036
- Swaminathan, J. (2008). File:PDB 1dn3 EBI.jpg [Image]. Retrieved from https://commons.wikimedia.org/wiki/File:PDB_1dn3_EBI.jpg
- The UniProt Consortium, UniProt: the universal protein knowledgebase in 2021, Nucleic Acids Research, Volume 49, Issue D1, 8 January 2021, Pages D480-D489, https://doi.org/10.1093/nar/gkaa1100
- Totrov, M.M. and Abagyan, R.A. Efficient Parallelization of The Energy, Surface and Derivative Calculations For internal Coordinate Mechanics. J. Comput. Chem., 15, 11051112, 1994.
- Uday,H., Quaternary Structure of protein vector illustration. Protein structure and folding. [Image], retrived from https://www.shutterstock.com/fr/image-vector/quaternary-structure-protein-vector-illustration-folding-1961746360
- Velankar, S., Best, C., Beuth, B., Boutselakis, C., Cobley, N., \& Sousa Da Silva, A. et al. (2009). PDBe: Protein Data Bank in Europe. Nucleic Acids Research, 38(Database), D308-D317. doi: 10.1093/nar/gkp916
- Wang, H. (2015). Cryo-electron microscopy for structural biology: current status and future perspectives. Science China Life Sciences, 58(8), 750-756. doi: 10.1007/s11427-015-4851-2
- Warwick, T. (2018). What is Cryo-EM? | Blue Scientific. Retrieved from https://blue-scientific.com/cryo-em/

